Artykuły w czasopismach na temat „Bifunctional Electrocatalyst”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Bifunctional Electrocatalyst”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Karuppiah, Chelladurai, Balamurugan Thirumalraj, Srinivasan Alagar, Shakkthivel Piraman, Ying-Jeng Jame Li i Chun-Chen Yang. "Solid-State Ball-Milling of Co3O4 Nano/Microspheres and Carbon Black Endorsed LaMnO3 Perovskite Catalyst for Bifunctional Oxygen Electrocatalysis". Catalysts 11, nr 1 (7.01.2021): 76. http://dx.doi.org/10.3390/catal11010076.
Pełny tekst źródłaKaruppiah, Chelladurai, Balamurugan Thirumalraj, Srinivasan Alagar, Shakkthivel Piraman, Ying-Jeng Jame Li i Chun-Chen Yang. "Solid-State Ball-Milling of Co3O4 Nano/Microspheres and Carbon Black Endorsed LaMnO3 Perovskite Catalyst for Bifunctional Oxygen Electrocatalysis". Catalysts 11, nr 1 (7.01.2021): 76. http://dx.doi.org/10.3390/catal11010076.
Pełny tekst źródłaMadan, Chetna, i Aditi Halder. "Nonprecious Multi-Principal Metal Systems As the Air Electrode for a Solid-State Rechargeable Zinc-Air Battery". ECS Meeting Abstracts MA2022-02, nr 64 (9.10.2022): 2327. http://dx.doi.org/10.1149/ma2022-02642327mtgabs.
Pełny tekst źródłaGaolatlhe, Lesego, Augustus Kelechi Lebechi, Aderemi Bashiru Haruna, Thapelo Prince Mofokeng, Patrick Vaati Mwonga i Kenneth Ikechukwu Ozoemena. "High Entropy Spinel Oxide As a Bifunctional Electrocatalyst for Rechargeable Zinc-Air Battery". ECS Meeting Abstracts MA2022-02, nr 7 (9.10.2022): 2419. http://dx.doi.org/10.1149/ma2022-0272419mtgabs.
Pełny tekst źródłaZhang, Tian, Bikun Zhang, Qiong Peng, Jian Zhou i Zhimei Sun. "Mo2B2 MBene-supported single-atom catalysts as bifunctional HER/OER and OER/ORR electrocatalysts". Journal of Materials Chemistry A 9, nr 1 (2021): 433–41. http://dx.doi.org/10.1039/d0ta08630d.
Pełny tekst źródłaQin, Xupeng, Oluwafunmilola Ola, Jianyong Zhao, Zanhe Yang, Santosh K. Tiwari, Nannan Wang i Yanqiu Zhu. "Recent Progress in Graphene-Based Electrocatalysts for Hydrogen Evolution Reaction". Nanomaterials 12, nr 11 (25.05.2022): 1806. http://dx.doi.org/10.3390/nano12111806.
Pełny tekst źródłaSingh, Harish, McKenzie Marley Hines, Shatadru Chakravarty i Manashi Nath. "Multi-Walled Carbon Nanotube Supported Manganese Selenide As Highly Active Bifunctional OER and ORR Electrocatalyst". ECS Meeting Abstracts MA2022-01, nr 34 (7.07.2022): 1376. http://dx.doi.org/10.1149/ma2022-01341376mtgabs.
Pełny tekst źródłaJeon, Jaeeun, Kyoung Ryeol Park, Kang Min Kim, Daehyeon Ko, HyukSu Han, Nuri Oh, Sunghwan Yeo, Chisung Ahn i Sungwook Mhin. "CoFeS2@CoS2 Nanocubes Entangled with CNT for Efficient Bifunctional Performance for Oxygen Evolution and Oxygen Reduction Reactions". Nanomaterials 12, nr 6 (16.03.2022): 983. http://dx.doi.org/10.3390/nano12060983.
Pełny tekst źródłaWang, Chengcheng, Ziheng Zheng, Zian Chen, Xinlei Luo, Bingxue Hou, Mortaza Gholizadeh, Xiang Gao, Xincan Fan i Zanxiong Tan. "Enhancement on PrBa0.5Sr0.5Co1.5Fe0.5O5 Electrocatalyst Performance in the Application of Zn-Air Battery". Catalysts 12, nr 7 (20.07.2022): 800. http://dx.doi.org/10.3390/catal12070800.
Pełny tekst źródłaLiang, Yunxia, Qiaojuan Gong, Xiaoling Sun, Nengneng Xu, Pengni Gong i Jinli Qiao. "Fabrication of CoMN2O4 loaded nitrogen-doped graphene as bifunctional electrocatalyst for rechargeable zinc-air batteries". Functional Materials Letters 13, nr 08 (listopad 2020): 2051046. http://dx.doi.org/10.1142/s1793604720510467.
Pełny tekst źródłaWang, Fan, Rui Tian, Xingzhong Guo, Yang Hou, Chang Zou i Hui Yang. "Construction of Petal-Like Ag NWs@NiCoP with Three-Dimensional Core-Shell Structure for Overall Water Splitting". Nanomaterials 12, nr 7 (4.04.2022): 1205. http://dx.doi.org/10.3390/nano12071205.
Pełny tekst źródłaLuo, Wen-Bin, Shu-Lei Chou, Jia-Zhao Wang i Hua-Kun Liu. "A B4C nanowire and carbon nanotube composite as a novel bifunctional electrocatalyst for high energy lithium oxygen batteries". Journal of Materials Chemistry A 3, nr 36 (2015): 18395–99. http://dx.doi.org/10.1039/c5ta04374c.
Pełny tekst źródłaChen, Jun Jie, i De Guang Xu. "Recent Development and Applications in Electrodes for URFC". International Letters of Chemistry, Physics and Astronomy 47 (luty 2015): 165–77. http://dx.doi.org/10.18052/www.scipress.com/ilcpa.47.165.
Pełny tekst źródłaChen, Jun Jie, i De Guang Xu. "Recent Development and Applications in Electrodes for URFC". International Letters of Chemistry, Physics and Astronomy 47 (24.02.2015): 165–77. http://dx.doi.org/10.56431/p-o13q11.
Pełny tekst źródłaKagkoura, Antonia, Raul Arenal i Nikos Tagmatarchis. "Sulfur-Doped Carbon Nanohorn Bifunctional Electrocatalyst for Water Splitting". Nanomaterials 10, nr 12 (3.12.2020): 2416. http://dx.doi.org/10.3390/nano10122416.
Pełny tekst źródłaSachdeva, Parrydeep Kaur, Shuchi Gupta i Chandan Bera. "Designing an efficient bifunctional electrocatalyst heterostructure". Chemical Communications 57, nr 74 (2021): 9426–29. http://dx.doi.org/10.1039/d1cc02492b.
Pełny tekst źródłaAlimbekova, Amina, Akmal Kosimov, Gulnara Yusibova, Jaan Aruväli, Maike Käärik, Jaan Leis i Nadezda Kongi. "Sacrificial Template-Assisted Mechanochemical Production of Highly Active Bifunctional Fe-N-C Catalysts". ECS Meeting Abstracts MA2022-01, nr 35 (7.07.2022): 1475. http://dx.doi.org/10.1149/ma2022-01351475mtgabs.
Pełny tekst źródłaHe, Xiong, Jiayang Cai, Jie Zhou, Qiyi Chen, Qijun Zhong, Jinghua Liu, Zijun Sun, Dezhi Qu i Yudong Li. "Facile Electrochemical Synthesis of Bifunctional Needle-like Co-P Nanoarray for Efficient Overall Water Splitting". Molecules 28, nr 16 (17.08.2023): 6101. http://dx.doi.org/10.3390/molecules28166101.
Pełny tekst źródłaZhu, Jie, Mao Sun, Shujie Liu, Xianhu Liu, Kan Hu i Lei Wang. "Study of active sites on Se-MnS/NiS heterojunctions as highly efficient bifunctional electrocatalysts for overall water splitting". Journal of Materials Chemistry A 7, nr 47 (2019): 26975–83. http://dx.doi.org/10.1039/c9ta10860b.
Pełny tekst źródłaLiu, Kai, Hongpu Huang, Yuxin Zhu, Shupeng Wang, Zixi Lyu, Xiao Han, Qin Kuang i Shuifen Xie. "Edge-segregated ternary Pd–Pt–Ni spiral nanosheets as high-performance bifunctional oxygen redox electrocatalysts for rechargeable zinc–air batteries". Journal of Materials Chemistry A 10, nr 7 (2022): 3808–17. http://dx.doi.org/10.1039/d1ta10585j.
Pełny tekst źródłaVenkatkarthick, R., D. J. Davidson, S. Ravichandran, S. Vengatesan, G. Sozhan i S. Vasudevan. "Eco-friendly and facilely prepared silica modified amorphous titania (TiO2–SiO2) electrocatalyst for the O2 and H2 evolution reactions". Catalysis Science & Technology 5, nr 11 (2015): 5016–22. http://dx.doi.org/10.1039/c5cy00805k.
Pełny tekst źródłaLiu, Hengqi, Depeng Zhao, Meizhen Dai, Xiaofei Zhu, Fengyu Qu, Ahmad Umar i Xiang Wu. "PEDOT decorated CoNi2S4 nanosheets electrode as bifunctional electrocatalyst for enhanced electrocatalysis". Chemical Engineering Journal 428 (styczeń 2022): 131183. http://dx.doi.org/10.1016/j.cej.2021.131183.
Pełny tekst źródłaMathialagan, Kowsalya, Saranya T, Ammu Surendran, Ditty Dixon, Nishanthi S.T. i Aiswarya Bhaskar. "(Digital Presentation) Development of Bifunctional Oxygen Electrocatalysts for Electrically Rechargeable Zinc-Air Batteries". ECS Meeting Abstracts MA2022-02, nr 4 (9.10.2022): 403. http://dx.doi.org/10.1149/ma2022-024403mtgabs.
Pełny tekst źródłaSasikala, N., K. Ramya i K. S. Dhathathreyan. "Bifunctional electrocatalyst for oxygen/air electrodes". Energy Conversion and Management 77 (styczeń 2014): 545–49. http://dx.doi.org/10.1016/j.enconman.2013.10.010.
Pełny tekst źródłaLi, Yang, Wei Zhou, Juncai Dong, Yun Luo, Pengfei An, Juan Liu, Xin Wu, Guilan Xu, Huabin Zhang i Jian Zhang. "Interface engineered in situ anchoring of Co9S8 nanoparticles into a multiple doped carbon matrix: highly efficient zinc–air batteries". Nanoscale 10, nr 5 (2018): 2649–57. http://dx.doi.org/10.1039/c7nr07235j.
Pełny tekst źródłaPan, Qingyan, Xinsheng Chen, Hui Liu, Weijin Gan, Naixiu Ding i Yingjie Zhao. "Crystalline porphyrin-based graphdiyne for electrochemical hydrogen and oxygen evolution reactions". Materials Chemistry Frontiers 5, nr 12 (2021): 4596–603. http://dx.doi.org/10.1039/d1qm00285f.
Pełny tekst źródłaSingh, Vijay K., Umesh T. Nakate, Priyanuj Bhuyan, Jinyu Chen, Duy Thanh Tran i Sungjune Park. "Mo/Co doped 1T-VS2 nanostructures as a superior bifunctional electrocatalyst for overall water splitting in alkaline media". Journal of Materials Chemistry A 10, nr 16 (2022): 9067–79. http://dx.doi.org/10.1039/d2ta00488g.
Pełny tekst źródłaRajalakshmi, R., C. Viswanathan i N. Ponpandian. "Sm3+ rare-earth doping in non-noble metal oxide –WO3 grown on carbon cloth fibre as a bifunctional electrocatalyst for high-performance water electrolysis". Sustainable Energy & Fuels 5, nr 22 (2021): 5851–65. http://dx.doi.org/10.1039/d1se01563j.
Pełny tekst źródłaRajalakshmi, R., C. Viswanathan i N. Ponpandian. "Sm3+ rare-earth doping in non-noble metal oxide –WO3 grown on carbon cloth fibre as a bifunctional electrocatalyst for high-performance water electrolysis". Sustainable Energy & Fuels 5, nr 22 (2021): 5851–65. http://dx.doi.org/10.1039/d1se01563j.
Pełny tekst źródłaHu, Wenhui, Qing Wang, Shanshan Wu i Yongmin Huang. "Facile one-pot synthesis of a nitrogen-doped mesoporous carbon architecture with cobalt oxides encapsulated in graphitic layers as a robust bicatalyst for oxygen reduction and evolution reactions". Journal of Materials Chemistry A 4, nr 43 (2016): 16920–27. http://dx.doi.org/10.1039/c6ta08103g.
Pełny tekst źródłaXiao, Xin, Dekang Huang, Yanping Luo, Man Li, Mingkui Wang i Yan Shen. "Ultrafine Pt nanoparticle decoration with CoP as highly active electrocatalyst for alcohol oxidation". RSC Advances 6, nr 102 (2016): 100437–42. http://dx.doi.org/10.1039/c6ra21938a.
Pełny tekst źródłaRajagopal, Kayalvizhi, Murugavel Kathiresan, Arulmozhi Rajaram, Abirami Natarajan i Kumaresan Natesan. "Development of robust noble-metal free lanthanum, neodymium doped Li1.05Ni0.5Mn1.5O4 as a bifunctional electrocatalyst for electrochemical water splitting". RSC Advances 13, nr 34 (2023): 23829–40. http://dx.doi.org/10.1039/d3ra04495e.
Pełny tekst źródłaMarsudi, Maradhana Agung, Yuanyuan Ma, Bagas Prakoso, Jayadi Jaya Hutani, Arie Wibowo, Yun Zong, Zhaolin Liu i Afriyanti Sumboja. "Manganese Oxide Nanorods Decorated Table Sugar Derived Carbon as Efficient Bifunctional Catalyst in Rechargeable Zn-Air Batteries". Catalysts 10, nr 1 (1.01.2020): 64. http://dx.doi.org/10.3390/catal10010064.
Pełny tekst źródłaGao, Xiaolan, i Ge Li. "Ultrasmall Co9S8 nanocrystals on Carbon Nanoplates for Efficient Bifunctional Oxygen Electrocatalysis". ECS Meeting Abstracts MA2022-01, nr 49 (7.07.2022): 2074. http://dx.doi.org/10.1149/ma2022-01492074mtgabs.
Pełny tekst źródłaAmaro-Gahete, Juan, José A. Salatti-Dorado, Almudena Benítez, Dolores Esquivel, Valentín García-Caballero, Miguel López-Haro, Juan J. Delgado, Manuel Cano, Juan J. Giner-Casares i Francisco J. Romero-Salguero. "Surface Diels–Alder adducts on multilayer graphene for the generation of edge-enriched single-atom FeN4 sites for ORR and OER electrocatalysis". Sustainable Energy & Fuels 6, nr 6 (2022): 1603–15. http://dx.doi.org/10.1039/d2se00004k.
Pełny tekst źródłaLi, Junzhi, Guodong Wei, Yukun Zhu, Yunlong Xi, Xuexue Pan, Yuan Ji, Igor V. Zatovsky i Wei Han. "Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting". Journal of Materials Chemistry A 5, nr 28 (2017): 14828–37. http://dx.doi.org/10.1039/c7ta03947f.
Pełny tekst źródłaHu, Hao, Yuhua Xie, Farhad M. D. Kazim, Konggang Qu, Min Li, Zhikun Xu i Zehui Yang. "Synergetic FeCo nanorods embedded in nitrogen-doped carbon nanotubes with abundant metal–NCNT heterointerfaces as efficient air electrocatalysts for rechargeable zinc–air batteries". Sustainable Energy & Fuels 4, nr 10 (2020): 5188–94. http://dx.doi.org/10.1039/d0se01023e.
Pełny tekst źródłaGuo, Jianing, Tingting Li, Qiuli Wang, Ningyuan Zhang, Yuanhui Cheng i Zhonghua Xiang. "Superior oxygen electrocatalysts derived from predesigned covalent organic polymers for zinc–air flow batteries". Nanoscale 11, nr 1 (2019): 211–18. http://dx.doi.org/10.1039/c8nr08330d.
Pełny tekst źródłaWang, Jing, Shuwei Zhang, Haihong Zhong, Nicolas Alonso-Vante, Dianqing Li, Pinggui Tang i Yongjun Feng. "Nitrogen-Doped Ordered Mesoporous Carbons Supported Co3O4 Composite as a Bifunctional Oxygen Electrode Catalyst". Surfaces 2, nr 2 (29.03.2019): 229–40. http://dx.doi.org/10.3390/surfaces2020018.
Pełny tekst źródłaNiu, Weixing, Yani Guan, Yuhong Luo, Guihua Liu i Jingde Li. "A macroporous titanium oxynitride-supported bifunctional oxygen electrocatalyst for zinc–air batteries". Catalysis Science & Technology 11, nr 24 (2021): 7922–31. http://dx.doi.org/10.1039/d1cy01328a.
Pełny tekst źródłaIpadeola, Adewale K., i Kenneth I. Ozoemena. "Alkaline water-splitting reactions over Pd/Co-MOF-derived carbon obtained via microwave-assisted synthesis". RSC Advances 10, nr 29 (2020): 17359–68. http://dx.doi.org/10.1039/d0ra02307h.
Pełny tekst źródłaSun, Chaoyang, Hui Wang, Shan Ji, Xuyun Wang, Vladimir Linkov, Xinlong Tian, Long Yao, Jiarui Zhao i Rongfang Wang. "Layer-structured FeCo bihydroxide as an ultra-stable bifunctional electrocatalyst for water splitting at high current densities". Sustainable Energy & Fuels 5, nr 10 (2021): 2747–52. http://dx.doi.org/10.1039/d1se00380a.
Pełny tekst źródłaWu, Aiping, Ying Gu, Bairui Yang, Han Wu, Haijing Yan, Yanqing Jiao, Dongxu Wang, Chungui Tian i Honggang Fu. "Porous cobalt/tungsten nitride polyhedra as efficient bifunctional electrocatalysts for overall water splitting". Journal of Materials Chemistry A 8, nr 43 (2020): 22938–46. http://dx.doi.org/10.1039/d0ta09620b.
Pełny tekst źródłaAfaq, Muhammad, Muhammad Shahid, Iqbal Ahmad, Sheraz Yousaf, Amira Alazmi, M. H. H. Mahmoud, Islam H. El Azab i Muhammad Farooq Warsi. "Large-scale sonochemical fabrication of a Co3O4–CoFe2O4@MWCNT bifunctional electrocatalyst for enhanced OER/HER performances". RSC Advances 13, nr 28 (2023): 19046–57. http://dx.doi.org/10.1039/d3ra03117a.
Pełny tekst źródłaJanani, Gnanaprakasam, Yujin Chae, Subramani Surendran, Yelyn Sim, Woosung Park, Jung Kyu Kim i Uk Sim. "Rational Design of Spinel Oxide Nanocomposites with Tailored Electrochemical Oxygen Evolution and Reduction Reactions for ZincAir Batteries". Applied Sciences 10, nr 9 (1.05.2020): 3165. http://dx.doi.org/10.3390/app10093165.
Pełny tekst źródłaZahoor, Awan. "Effect of varying percentages of Co3O4 Nanoparticles on the Behavior of (ORR/OER) Bifunctional Co3O4/α-MnO2 Electrocatalyst". TECCIENCIA 18, nr 34 (12.12.2023): 43–52. http://dx.doi.org/10.18180/tecciencia.2023.34.4.
Pełny tekst źródłaZahoor, Awan, Ghadia Ahmed, Muhammad Amir, Faaz Butt Butt i as Naqvi. "Effect of varying percentages of Co3O4 Nanoparticles on the Behavior of (ORR/OER) Bifunctional Co3O4/α-MnO2 Electrocatalyst". TECCIENCIA 18, nr 34 (2.02.2023): 43–52. http://dx.doi.org/10.18180/tecciencia.2022.34.4.
Pełny tekst źródłaLiu, Huanhuan, Zhenhua Yan, Xiang Chen, Jinhan Li, Le Zhang, Fangming Liu, Guilan Fan i Fangyi Cheng. "Electrodeposition of Pt-Decorated Ni(OH)2/CeO2 Hybrid as Superior Bifunctional Electrocatalyst for Water Splitting". Research 2020 (15.12.2020): 1–11. http://dx.doi.org/10.34133/2020/9068270.
Pełny tekst źródłaWu, Zexing, Dazong Nie, Min Song, Tiantian Jiao, Gengtao Fu i Xien Liu. "Facile synthesis of Co–Fe–B–P nanochains as an efficient bifunctional electrocatalyst for overall water-splitting". Nanoscale 11, nr 15 (2019): 7506–12. http://dx.doi.org/10.1039/c9nr01794a.
Pełny tekst źródłaWang, Wei, Haitao Wang, Yang Yu, Zexing Wu, Muhammad Asif i Hongfang Liu. "Metallic cobalt modified MnO–C nanocrystalline composites as an efficient bifunctional oxygen electrocatalyst". Catalysis Science & Technology 8, nr 2 (2018): 480–85. http://dx.doi.org/10.1039/c7cy01957b.
Pełny tekst źródła