Artykuły w czasopismach na temat „Bi-functional Electrocatalyst”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Bi-functional Electrocatalyst”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Ekspong, Joakim, i Thomas Wågberg. "Stainless Steel as A Bi-Functional Electrocatalyst—A Top-Down Approach". Materials 12, nr 13 (2.07.2019): 2128. http://dx.doi.org/10.3390/ma12132128.
Pełny tekst źródłaSunarso, Jaka, Alexey M. Glushenkov, Angel A. J. Torriero, Patrick C. Howlett, Ying Chen, Douglas R. MacFarlane i Maria Forsyth. "Bi-Functional Water/Oxygen Electrocatalyst Based on PdO-RuO2Composites". Journal of The Electrochemical Society 160, nr 1 (21.11.2012): H74—H79. http://dx.doi.org/10.1149/2.019302jes.
Pełny tekst źródłaTang, Shaobin, Xunhui Zhou, Tianyong Liu, Shiyong Zhang, Tongtong Yang, Yi Luo, Edward Sharman i Jun Jiang. "Single nickel atom supported on hybridized graphene–boron nitride nanosheet as a highly active bi-functional electrocatalyst for hydrogen and oxygen evolution reactions". Journal of Materials Chemistry A 7, nr 46 (2019): 26261–65. http://dx.doi.org/10.1039/c9ta10500j.
Pełny tekst źródłaWang, Hao-Fan, Cheng Tang, Xiaolin Zhu i Qiang Zhang. "A ‘point–line–point’ hybrid electrocatalyst for bi-functional catalysis of oxygen evolution and reduction reactions". Journal of Materials Chemistry A 4, nr 9 (2016): 3379–85. http://dx.doi.org/10.1039/c5ta09327a.
Pełny tekst źródłaMeng, Lu, Ling Zhan, Hongliang Jiang, Yihua Zhu i Chunzhong Li. "Confined Co9S8 into a defective carbon matrix as a bifunctional oxygen electrocatalyst for rechargeable zinc–air batteries". Catalysis Science & Technology 9, nr 20 (2019): 5757–62. http://dx.doi.org/10.1039/c9cy01717h.
Pełny tekst źródłaJin, Liujun, Hui Xu, Cheng Wang, Yong Wang, Hongyuan Shang i Yukou Du. "Multi-dimensional collaboration promotes the catalytic performance of 1D MoO3 nanorods decorated with 2D NiS nanosheets for efficient water splitting". Nanoscale 12, nr 42 (2020): 21850–56. http://dx.doi.org/10.1039/d0nr05250g.
Pełny tekst źródłaWang, Yaqin, Xinxin Xu, Luyao Liu, Jin Chen i Guimei Shi. "A coordination polymer-derived Co3O4/Co–N@NMC composite material as a Zn–air battery cathode electrocatalyst and microwave absorber". Dalton Transactions 48, nr 21 (2019): 7150–57. http://dx.doi.org/10.1039/c8dt03792b.
Pełny tekst źródłaYuan, Shi-Jie, i Xiao-Hu Dai. "An efficient sewage sludge-derived bi-functional electrocatalyst for oxygen reduction and evolution reaction". Green Chemistry 18, nr 14 (2016): 4004–11. http://dx.doi.org/10.1039/c5gc02729b.
Pełny tekst źródłaMaitra, S., R. Mitra i T. K. Nath. "Aqueous Mg-Ion Supercapacitor and Bi-Functional Electrocatalyst Based on MgTiO3 Nanoparticles". Journal of Nanoscience and Nanotechnology 21, nr 12 (1.12.2021): 6217–26. http://dx.doi.org/10.1166/jnn.2021.19321.
Pełny tekst źródłaChen, Xiaojuan, Yan Meng, Taotao Gao, Jinmei Zhang, Xiaoqin Li, Hongyan Yuan i Dan Xiao. "An iron foam acts as a substrate and iron source for the in situ construction of a robust transition metal phytate electrocatalyst for overall water splitting". Sustainable Energy & Fuels 4, nr 1 (2020): 331–36. http://dx.doi.org/10.1039/c9se00348g.
Pełny tekst źródłaBurse, Shalmali, Rakesh Kulkarni, Rutuja Mandavkar, Md Ahasan Habib, Shusen Lin, Young-Uk Chung, Jae-Hun Jeong i Jihoon Lee. "Vanadium-Doped FeBP Microsphere Croissant for Significantly Enhanced Bi-Functional HER and OER Electrocatalyst". Nanomaterials 12, nr 19 (21.09.2022): 3283. http://dx.doi.org/10.3390/nano12193283.
Pełny tekst źródłaAmanullah, Sk, i Abhishek Dey. "A bi-functional cobalt-porphyrinoid electrocatalyst: balance between overpotential and selectivity". JBIC Journal of Biological Inorganic Chemistry 24, nr 4 (30.05.2019): 437–42. http://dx.doi.org/10.1007/s00775-019-01670-5.
Pełny tekst źródłaWu, Caiyun, Yunmei Du, Yunlei Fu, Di Feng, Hui Li, Zhenyu Xiao, Yanru Liu, Yu Yang i Lei Wang. "Mo, Co co-doped NiS bulks supported on Ni foam as an efficient electrocatalyst for overall water splitting in alkaline media". Sustainable Energy & Fuels 4, nr 4 (2020): 1654–64. http://dx.doi.org/10.1039/c9se00822e.
Pełny tekst źródłaLuo, Xinlei, Ziheng Zheng, Bingxue Hou, Xianpan Xie i Cheng Cheng Wang. "Facile synthesis of a MOF-derived Co–N–C nanostructure as a bi-functional oxygen electrocatalyst for rechargeable Zn–air batteries". RSC Advances 13, nr 27 (2023): 18888–97. http://dx.doi.org/10.1039/d3ra02191b.
Pełny tekst źródłaKumaravel, Sangeetha, Kannimuthu Karthick, Selvasundarasekar Sam Sankar, Arun Karmakar, Ragunath Madhu, Krishnendu Bera i Subrata Kundu. "Current progressions in transition metal based hydroxides as bi-functional catalysts towards electrocatalytic total water splitting". Sustainable Energy & Fuels 5, nr 24 (2021): 6215–68. http://dx.doi.org/10.1039/d1se01193f.
Pełny tekst źródłaNguyen, Thi Xuyen, Nai-Hsin Ting i Jyh-Ming Ting. "Multi-metal phosphide as bi-functional electrocatalyst for enhanced water splitting performance". Journal of Power Sources 552 (grudzień 2022): 232249. http://dx.doi.org/10.1016/j.jpowsour.2022.232249.
Pełny tekst źródłaDuan, Yaxin, Haitao Liu, Huabing Zhang, Shaojie Ke, Shuaize Wang, Meiling Dou i Feng Wang. "Conductive bimetal organic framework nanorods decorated with highly dispersed Co3O4 nanoparticles as bi-functional electrocatalyst". Nanotechnology 33, nr 14 (12.01.2022): 145601. http://dx.doi.org/10.1088/1361-6528/ac3d66.
Pełny tekst źródłaHu, Enlai, Jiqiang Ning, Bin He, Zhipeng Li, Changcheng Zheng, Yijun Zhong, Ziyang Zhang i Yong Hu. "Unusual formation of tetragonal microstructures from nitrogen-doped carbon nanocapsules with cobalt nanocores as a bi-functional oxygen electrocatalyst". Journal of Materials Chemistry A 5, nr 5 (2017): 2271–79. http://dx.doi.org/10.1039/c6ta09943b.
Pełny tekst źródłaNandan, Ravi, i K. K. Nanda. "A unique approach to designing resilient bi-functional nano-electrocatalysts based on ultrafine bimetallic nanoparticles dispersed in carbon nanospheres". Journal of Materials Chemistry A 5, nr 21 (2017): 10544–53. http://dx.doi.org/10.1039/c7ta02293j.
Pełny tekst źródłaNandan, R., i K. K. Nanda. "Rational geometrical engineering of palladium sulfide multi-arm nanostructures as a superior bi-functional electrocatalyst". Nanoscale 9, nr 34 (2017): 12628–36. http://dx.doi.org/10.1039/c7nr04733a.
Pełny tekst źródłaMukherjee, Biswanath. "First principles investigation on cobalt–tetracyanoquinodimethane monolayer for efficient Bi-functional single atom electrocatalyst". Journal of Electroanalytical Chemistry 897 (wrzesień 2021): 115602. http://dx.doi.org/10.1016/j.jelechem.2021.115602.
Pełny tekst źródłaRodney, John D., S. Deepapriya, M. Cyril Robinson, C. Justin Raj, Suresh Perumal, Byung Chul Kim i S. Jerome Das. "Lanthanum doped copper oxide nanoparticles enabled proficient bi-functional electrocatalyst for overall water splitting". International Journal of Hydrogen Energy 45, nr 46 (wrzesień 2020): 24684–96. http://dx.doi.org/10.1016/j.ijhydene.2020.06.240.
Pełny tekst źródłaWang, Ying, Mengfei Qiao i Xamxikamar Mamat. "An advantage combined strategy for preparing bi-functional electrocatalyst in rechargeable zinc-air batteries". Chemical Engineering Journal 402 (grudzień 2020): 126214. http://dx.doi.org/10.1016/j.cej.2020.126214.
Pełny tekst źródłaBhuvanendran, Narayanamoorthy, Sabarinathan Ravichandran, Kai Peng, Santhana Sivabalan Jayaseelan, Qian Xu i Huaneng Su. "Highly durable carbon supported FeN nanocrystals feature as efficient bi‐functional oxygen electrocatalyst". International Journal of Energy Research 44, nr 11 (16.06.2020): 8413–26. http://dx.doi.org/10.1002/er.5524.
Pełny tekst źródłaLv, Hualun, Xudong Zhang, Jialin Cai, Xin Xie, Yunxiao Fan, Leyan Liu, Jie Ding, Qiang Cai i Yushan Liu. "Construction of RuSe2/MoOx hybrid and used as bi-functional electrocatalyst for overall water splitting". Materials Chemistry and Physics 277 (luty 2022): 125461. http://dx.doi.org/10.1016/j.matchemphys.2021.125461.
Pełny tekst źródłaJhajharia, Suman Kumari, i Kaliaperumal Selvaraj. "Molecularly engineered graphene oxide anchored metal organic assembly: An active site economic bi-functional electrocatalyst". FlatChem 29 (wrzesień 2021): 100269. http://dx.doi.org/10.1016/j.flatc.2021.100269.
Pełny tekst źródłaZhuang, Shuxin, Kelong Huang, Chenghuan Huang, Hongxia Huang, Suqin Liu i Min Fan. "Preparation of silver-modified La0.6Ca0.4CoO3 binary electrocatalyst for bi-functional air electrodes in alkaline medium". Journal of Power Sources 196, nr 8 (kwiecień 2011): 4019–25. http://dx.doi.org/10.1016/j.jpowsour.2010.11.056.
Pełny tekst źródłaJoy, Jaison, Sivamathini Rajappa, Vijayamohanan K. Pillai i Subbiah Alwarappan. "Co3Fe7/nitrogen-doped graphene nanoribbons as bi-functional electrocatalyst for oxygen reduction and oxygen evolution". Nanotechnology 29, nr 41 (6.08.2018): 415402. http://dx.doi.org/10.1088/1361-6528/aad35e.
Pełny tekst źródłaMujtaba, Ayesha, Naveed Kausar Janjua, Tariq Yasin i Sana Sabahat. "Assessing the electrochemical performance of hierarchical nanostructured CuO@TiO2 as an efficient bi-functional electrocatalyst". Journal of the Iranian Chemical Society 17, nr 3 (2.11.2019): 649–62. http://dx.doi.org/10.1007/s13738-019-01797-x.
Pełny tekst źródłaJayaseelan, Santhana Sivabalan, Narayanamoorthy Bhuvanendran, Qian Xu i Huaneng Su. "Co3O4 nanoparticles decorated Polypyrrole/carbon nanocomposite as efficient bi-functional electrocatalyst for electrochemical water splitting". International Journal of Hydrogen Energy 45, nr 7 (luty 2020): 4587–95. http://dx.doi.org/10.1016/j.ijhydene.2019.12.085.
Pełny tekst źródłaBian, Weiyong, Zhenrong Yang, Peter Strasser i Ruizhi Yang. "A CoFe2O4/graphene nanohybrid as an efficient bi-functional electrocatalyst for oxygen reduction and oxygen evolution". Journal of Power Sources 250 (marzec 2014): 196–203. http://dx.doi.org/10.1016/j.jpowsour.2013.11.024.
Pełny tekst źródłaLiu, Ying, Fei Yang, Wei Qin i Guowei Yang. "Co2P@NiCo2O4 bi-functional electrocatalyst with low overpotential for water splitting in wide range pH electrolytes". Journal of Colloid and Interface Science 534 (styczeń 2019): 55–63. http://dx.doi.org/10.1016/j.jcis.2018.09.017.
Pełny tekst źródłaEnsafi, Ali A., Mehdi Jafari-Asl, Afshin Nabiyan i B. Rezaei. "Ni3S2/ball-milled silicon flour as a bi-functional electrocatalyst for hydrogen and oxygen evolution reactions". Energy 116 (grudzień 2016): 392–401. http://dx.doi.org/10.1016/j.energy.2016.09.128.
Pełny tekst źródłaZahoor, Awan. "Effect of varying percentages of Co3O4 Nanoparticles on the Behavior of (ORR/OER) Bifunctional Co3O4/α-MnO2 Electrocatalyst". TECCIENCIA 18, nr 34 (12.12.2023): 43–52. http://dx.doi.org/10.18180/tecciencia.2023.34.4.
Pełny tekst źródłaZahoor, Awan, Ghadia Ahmed, Muhammad Amir, Faaz Butt Butt i as Naqvi. "Effect of varying percentages of Co3O4 Nanoparticles on the Behavior of (ORR/OER) Bifunctional Co3O4/α-MnO2 Electrocatalyst". TECCIENCIA 18, nr 34 (2.02.2023): 43–52. http://dx.doi.org/10.18180/tecciencia.2022.34.4.
Pełny tekst źródłaSarmad, Qassam, Uneeb Masood Khan, Mutawara Mahmood Baig, Muhammad Hassan, Faaz Ahmed Butt, Asif Hussain Khoja, Rabia Liaquat, Zuhair S. Khan, Mustafa Anwar i Muhammed Ali S.A. "Praseodymium-doped Sr2TiFeO6-δ double perovskite as a bi-functional electrocatalyst for hydrogen production through water splitting". Journal of Environmental Chemical Engineering 10, nr 3 (czerwiec 2022): 107609. http://dx.doi.org/10.1016/j.jece.2022.107609.
Pełny tekst źródłaTian, Weiliang, Cheng Wang, Ruida Chen, Zhao Cai, Daojin Zhou, Yongchao Hao, Yingna Chang i in. "Aligned N-doped carbon nanotube bundles with interconnected hierarchical structure as an efficient bi-functional oxygen electrocatalyst". RSC Advances 8, nr 46 (2018): 26004–10. http://dx.doi.org/10.1039/c8ra03994a.
Pełny tekst źródłaJung, Ho-Young, Sehkyu Park, Prabhu Ganesan i Branko N. Popov. "Electrochemical Studies of Unsupported PtIr Electrocatalyst as Bi-Functional Oxygen Electrode in Unitized Regenerative Fuel Cells (URFCs)". ECS Transactions 16, nr 2 (18.12.2019): 1117–21. http://dx.doi.org/10.1149/1.2981953.
Pełny tekst źródłaMeng, Lingshen, Liping Li, Jianghao Wang, Sixian Fu, Yuelan Zhang, Jing Li, Chenglin Xue, Yanhua Wei i Guangshe Li. "Valence-engineered MoNi4/MoOx@NF as a Bi-functional electrocatalyst compelling for urea-assisted water splitting reaction". Electrochimica Acta 350 (sierpień 2020): 136382. http://dx.doi.org/10.1016/j.electacta.2020.136382.
Pełny tekst źródłaChen, Lulu, Wenxiu Yang, Xiangjian Liu, Ling Long, Dandan Li i Jianbo Jia. "Cobalt sulfide/N,S-codoped defect-rich carbon nanotubes hybrid as an excellent bi-functional oxygen electrocatalyst". Nanotechnology 30, nr 7 (18.12.2018): 075402. http://dx.doi.org/10.1088/1361-6528/aaf457.
Pełny tekst źródłaKaipannan, Subramani, P. Anandha Ganesh, Karnan Manickavasakam, Santhoshkumar Sundaramoorthy, Kaviarasan Govindarajan, Sundar Mayavan i Sathish Marappan. "Waste engine oil derived porous carbon/ZnS Nanocomposite as Bi-functional electrocatalyst for supercapacitor and oxygen reduction". Journal of Energy Storage 32 (grudzień 2020): 101774. http://dx.doi.org/10.1016/j.est.2020.101774.
Pełny tekst źródłaLi, Guang-Lan, Guang-Chun Cheng, Bei-Bei Yang, Cai-Di Liu, Li-Fang Yuan, Wen-Wen Chen, Xiao-Cun Xu i Ce Hao. "One-step construction of porous mixed spinel-type MnCoxO4/NCNT as an efficient bi-functional oxygen electrocatalyst". International Journal of Hydrogen Energy 43, nr 42 (październik 2018): 19451–59. http://dx.doi.org/10.1016/j.ijhydene.2018.08.175.
Pełny tekst źródłaRezaee, Sharifeh, i Saeed Shahrokhian. "3D ternary NixCo2−xP/C nanoflower/nanourchin arrays grown on HCNs: a highly efficient bi-functional electrocatalyst for boosting hydrogen production via the urea electro-oxidation reaction". Nanoscale 12, nr 30 (2020): 16123–35. http://dx.doi.org/10.1039/d0nr04616g.
Pełny tekst źródłaTian, Juntai, Wen Wu, Zhenghua Tang, Yuan Wu, Robert Burns, Brandon Tichnell, Zhen Liu i Shaowei Chen. "Oxygen Reduction Reaction and Hydrogen Evolution Reaction Catalyzed by Pd–Ru Nanoparticles Encapsulated in Porous Carbon Nanosheets". Catalysts 8, nr 8 (11.08.2018): 329. http://dx.doi.org/10.3390/catal8080329.
Pełny tekst źródłaLiu, Xingmei, Yuwei Wang, Liquan Fan, Weichao Zhang, Weiyan Cao, Xianxin Han, Xijun Liu i Hongge Jia. "Sm0.5Sr0.5Co1−xNixO3−δ—A Novel Bifunctional Electrocatalyst for Oxygen Reduction/Evolution Reactions". Molecules 27, nr 4 (14.02.2022): 1263. http://dx.doi.org/10.3390/molecules27041263.
Pełny tekst źródłaLi, Pengsong, Xinxuan Duan, Yun Kuang i Xiaoming Sun. "Iridium in Tungsten Trioxide Matrix as an Efficient Bi‐Functional Electrocatalyst for Overall Water Splitting in Acidic Media". Small 17, nr 45 (5.10.2021): 2102078. http://dx.doi.org/10.1002/smll.202102078.
Pełny tekst źródłaWang, Shumin, Yong Qin, Yang Liu, Fuqiang Chu, Yong Kong i Yongxin Tao. "Co,N,S-Codoped Three-Dimensional Graphene as Efficient Bi-Functional Electrocatalyst for Oxygen Reduction/Hydrogen Evolution Reaction". Journal of The Electrochemical Society 164, nr 12 (2017): F1110—F1114. http://dx.doi.org/10.1149/2.0671712jes.
Pełny tekst źródłaPark, Hey Woong, Dong Un Lee, Yulong Liu, Jason Wu, Linda F. Nazar i Zhongwei Chen. "Bi-Functional N-Doped CNT/Graphene Composite as Highly Active and Durable Electrocatalyst for Metal Air Battery Applications". Journal of The Electrochemical Society 160, nr 11 (2013): A2244—A2250. http://dx.doi.org/10.1149/2.097311jes.
Pełny tekst źródłaLi, Jin-Cheng, Peng-Xiang Hou, Shi-Yong Zhao, Chang Liu, Dai-Ming Tang, Min Cheng, Feng Zhang i Hui-Ming Cheng. "A 3D bi-functional porous N-doped carbon microtube sponge electrocatalyst for oxygen reduction and oxygen evolution reactions". Energy & Environmental Science 9, nr 10 (2016): 3079–84. http://dx.doi.org/10.1039/c6ee02169g.
Pełny tekst źródłaHosseinian, Akram, Rahim Hosseinzadeh-Khanmiri, Ebrahim Ghorbani-Kalhor, Jafar Abolhasani, Mirzaagha Babazadeh i Esmail Vessally. "Yolk-Shell Fe3O4-Polyaniline Decorated Pd-Ni Nanoparticles with Enhanced Performance for Direct Formic Acid Fuel Cell". Nano 12, nr 02 (luty 2017): 1750016. http://dx.doi.org/10.1142/s1793292017500163.
Pełny tekst źródła