Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Bergman metrics.

Artykuły w czasopismach na temat „Bergman metrics”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Bergman metrics”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Herbort, Gregor. "The growth of the bergman kernel on pseudoconvex domains of homogeneous finite diagonal type". Nagoya Mathematical Journal 126 (czerwiec 1992): 1–24. http://dx.doi.org/10.1017/s0027763000003986.

Pełny tekst źródła
Streszczenie:
In this article we continue the investigations on invariant metrics on a certain class of weakly pseudoconvex domains which we began in [H 1]. While in that paper the differential metrics of Caratheodory and Kobayashi were estimated precisely, the present paper contains a sharp estimate of the singularity of the Bergman kernel and metric on domains belonging to that class.
Style APA, Harvard, Vancouver, ISO itp.
2

Potash, Eric. "Euclidean Embeddings and Riemannian Bergman Metrics". Journal of Geometric Analysis 26, nr 1 (26.10.2015): 499–528. http://dx.doi.org/10.1007/s12220-015-9560-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Feng, Renjie. "Bergman metrics and geodesics in the space of Kähler metrics on principally polarized abelian varieties". Journal of the Institute of Mathematics of Jussieu 11, nr 1 (21.06.2011): 1–25. http://dx.doi.org/10.1017/s1474748011000119.

Pełny tekst źródła
Streszczenie:
AbstractIt is well known in Kähler geometry that the infinite-dimensional symmetric space $\mathcal{H}$ of smooth Kähler metrics in a fixed Kähler class on a polarized Kähler manifold is well approximated by finite-dimensional submanifolds $\mathcal{B}_k\subset\mathcal{H}$ of Bergman metrics of height k. Then it is natural to ask whether geodesics in $\mathcal{H}$ can be approximated by Bergman geodesics in $\mathcal{B}_k$. For any polarized Kähler manifold, the approximation is in the C0 topology. For some special varieties, one expects better convergence: Song and Zelditch proved the C2 convergence for the torus-invariant metrics over toric varieties. In this article, we show that some C∞ approximation exists as well as a complete asymptotic expansion for principally polarized abelian varieties.
Style APA, Harvard, Vancouver, ISO itp.
4

LOI, ANDREA. "BERGMAN AND BALANCED METRICS ON COMPLEX MANIFOLDS". International Journal of Geometric Methods in Modern Physics 02, nr 04 (sierpień 2005): 553–61. http://dx.doi.org/10.1142/s0219887805000685.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ferrari, Frank, Semyon Klevtsov i Steve Zelditch. "Simple matrix models for random Bergman metrics". Journal of Statistical Mechanics: Theory and Experiment 2012, nr 04 (25.04.2012): P04012. http://dx.doi.org/10.1088/1742-5468/2012/04/p04012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Maitani, Fumio, i Hiroshi Yamaguchi. "Variation of Bergman metrics on Riemann surfaces". Mathematische Annalen 330, nr 3 (8.06.2004): 477–89. http://dx.doi.org/10.1007/s00208-004-0556-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

BERMAN, ROBERT J. "BERGMAN KERNELS AND EQUILIBRIUM MEASURES FOR POLARIZED PSEUDO-CONCAVE DOMAINS". International Journal of Mathematics 21, nr 01 (styczeń 2010): 77–115. http://dx.doi.org/10.1142/s0129167x10005933.

Pełny tekst źródła
Streszczenie:
Let X be a domain in a closed polarized complex manifold (Y,L), where L is a (semi-) positive line bundle over Y. Any given Hermitian metric on L induces by restriction to X a Hilbert space structure on the space of global holomorphic sections on Y with values in the k-th tensor power of L (also using a volume form ωn on X. In this paper the leading large k asymptotics for the corresponding Bergman kernels and metrics are obtained in the case when X is a pseudo-concave domain with smooth boundary (under a certain compatibility assumption). The asymptotics are expressed in terms of the curvature of L and the boundary of X. The convergence of the Bergman metrics is obtained in a more general setting where (X,ωn) is replaced by any measure satisfying a Bernstein–Markov property. As an application the (generalized) equilibrium measure of the polarized pseudo-concave domain X is computed explicitly. Applications to the zero and mass distribution of random holomorphic sections and the eigenvalue distribution of Toeplitz operators will be described elsewhere.
Style APA, Harvard, Vancouver, ISO itp.
8

Feng, Zhiming. "The first two coefficients of the Bergman function expansions for Cartan–Hartogs domains". International Journal of Mathematics 29, nr 06 (czerwiec 2018): 1850043. http://dx.doi.org/10.1142/s0129167x1850043x.

Pełny tekst źródła
Streszczenie:
Let [Formula: see text] be a globally defined real Kähler potential on a domain [Formula: see text], and [Formula: see text] be a Kähler metric on the Hartogs domain [Formula: see text] associated with the Kähler potential [Formula: see text]. First, we obtain explicit formulas of the coefficients [Formula: see text] of the Bergman function expansion for the Hartogs domain [Formula: see text] in a momentum profile [Formula: see text]. Second, using explicit expressions of [Formula: see text], we obtain necessary and sufficient conditions for the coefficients [Formula: see text] to be constants. Finally, we obtain all the invariant complete Kähler metrics on Cartan–Hartogs domains such that their the coefficients [Formula: see text] of the Bergman function expansions are constants.
Style APA, Harvard, Vancouver, ISO itp.
9

Lazaroiu, Calin Iuliu, Daniel McNamee i Christian Sämann. "Generalized Berezin quantization, Bergman metrics and fuzzy laplacians". Journal of High Energy Physics 2008, nr 09 (10.09.2008): 059. http://dx.doi.org/10.1088/1126-6708/2008/09/059.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Loi, Andrea, i Fabio Zuddas. "Partially regular and cscK metrics". International Journal of Mathematics 31, nr 10 (27.07.2020): 2050079. http://dx.doi.org/10.1142/s0129167x20500792.

Pełny tekst źródła
Streszczenie:
A Kähler metric [Formula: see text] with integral Kähler form is said to be partially regular if the partial Bergman kernel associated to [Formula: see text] is a positive constant for all integer [Formula: see text] sufficiently large. The aim of this paper is to prove that for all [Formula: see text] there exists an [Formula: see text]-dimensional complex manifold equipped with strictly partially regular and cscK metric [Formula: see text]. Further, for [Formula: see text], the (constant) scalar curvature of [Formula: see text] can be chosen to be zero, positive or negative.
Style APA, Harvard, Vancouver, ISO itp.
11

Song, Jian, i Steve Zelditch. "Bergman metrics and geodesics in the space of Kähler metrics on toric varieties". Analysis & PDE 3, nr 3 (21.07.2010): 295–358. http://dx.doi.org/10.2140/apde.2010.3.295.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Wulan, Hasi, i Kehe Zhu. "Lipschitz Type Characterizations for Bergman Spaces". Canadian Mathematical Bulletin 52, nr 4 (1.12.2009): 613–26. http://dx.doi.org/10.4153/cmb-2009-060-6.

Pełny tekst źródła
Streszczenie:
AbstractWe obtain new characterizations for Bergman spaces with standard weights in terms of Lipschitz type conditions in the Euclidean, hyperbolic, and pseudo-hyperbolic metrics. As a consequence, we prove optimal embedding theorems when an analytic function on the unit disk is symmetrically lifted to the bidisk.
Style APA, Harvard, Vancouver, ISO itp.
13

Hahn, K. T., i P. Pflug. "The Kobayashi and Bergman metrics on generalized Thullen domains". Proceedings of the American Mathematical Society 104, nr 1 (1.01.1988): 207. http://dx.doi.org/10.1090/s0002-9939-1988-0958068-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Lu, Wen, Xiaonan Ma i George Marinescu. "Optimal convergence speed of Bergman metrics on symplectic manifolds". Journal of Symplectic Geometry 18, nr 4 (2020): 1091–126. http://dx.doi.org/10.4310/jsg.2020.v18.n4.a5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Fu, Siqi, i Bun Wong. "On strictly pseudoconvex domains with Kähler-Einstein Bergman metrics". Mathematical Research Letters 4, nr 5 (1997): 697–703. http://dx.doi.org/10.4310/mrl.1997.v4.n5.a7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Cho, Sanghyun, i Young Hwan You. "Estimates of Invariant Metrics on Pseudoconvex Domains of Finite Type inC3". Abstract and Applied Analysis 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/697160.

Pełny tekst źródła
Streszczenie:
LetΩbe a smoothly bounded pseudoconvex domain inC3and assume thatz0∈bΩis a point of finite 1-type in the sense of D’Angelo. Then, there are an admissible curveΓ⊂Ω∪{z0}, connecting points q0∈Ωandz0∈bΩ, and a quantityM(z,X), alongz∈Γ, which bounds from above and below the Bergman, Caratheodory, and Kobayashi metrics in a small constant and large constant sense.
Style APA, Harvard, Vancouver, ISO itp.
17

OHSAWA, Takeo. "A REMARK ON KAZHDAN'S THEOREM ON SEQUENCES OF BERGMAN METRICS". Kyushu Journal of Mathematics 63, nr 1 (2009): 133–37. http://dx.doi.org/10.2206/kyushujm.63.133.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Coman, Dan, Semyon Klevtsov i George Marinescu. "Bergman kernel asymptotics for singular metrics on punctured Riemann surfaces". Indiana University Mathematics Journal 68, nr 2 (2019): 593–628. http://dx.doi.org/10.1512/iumj.2019.68.7589.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Herbort, Gregor. "On the invariant differential metrics near pseudoconvex boundary points where the Levi form has corank one". Nagoya Mathematical Journal 130 (czerwiec 1993): 25–54. http://dx.doi.org/10.1017/s0027763000004414.

Pełny tekst źródła
Streszczenie:
Let D be a bounded domain in Cn; in the space L2(D) of functions on D which are square-integrable with respect to the Lebesgue measure d2nz the holomorphic functions form a closed subspace H2(D). Therefore there exists a well-defined orthogonal projection PD: L2(D) → H2(D) with an integral kernel KD:D × D → C, the Bergman kernel function of D. An explicit computation of this function directly from the definition is possible only in very few cases, as for instance the unit ball, the complex “ellipsoids” , or the annulus in the plane. Also, there is no hope of getting information about the function KD in the interior of a general domain. Therefore the question for an asymptotic formula for the Bergman kernel near the boundary of D arises.
Style APA, Harvard, Vancouver, ISO itp.
20

Hezari, Hamid, Zhiqin Lu i Hang Xu. "Off-diagonal Asymptotic Properties of Bergman Kernels Associated to Analytic Kähler Potentials". International Mathematics Research Notices 2020, nr 8 (7.05.2018): 2241–86. http://dx.doi.org/10.1093/imrn/rny081.

Pełny tekst źródła
Streszczenie:
Abstract We prove a new off-diagonal asymptotic of the Bergman kernels associated to tensor powers of a positive line bundle on a compact Kähler manifold. We show that if the Kähler potential is real analytic, then the Bergman kernel accepts a complete asymptotic expansion in a neighborhood of the diagonal of shrinking size $k^{-\frac 14}$. These improve the earlier results in the subject for smooth potentials, where an expansion exists in a $k^{-\frac 12}$ neighborhood of the diagonal. We obtain our results by finding upper bounds of the form $C^m m!^{2}$ for the Bergman coefficients $b_m(x, \bar y)$, which is an interesting problem on its own. We find such upper bounds using the method of [3]. We also show that sharpening these upper bounds would improve the rate of shrinking neighborhoods of the diagonal x = y in our results. In the special case of metrics with local constant holomorphic sectional curvatures, we obtain off-diagonal asymptotic in a fixed (as $k \to \infty$) neighborhood of the diagonal, which recovers a result of Berman [2] (see Remark 3.5 of [2] for higher dimensions). In this case, we also find an explicit formula for the Bergman kernel mod $O(e^{-k \delta } )$.
Style APA, Harvard, Vancouver, ISO itp.
21

Rubinstein, Yanir A., Gang Tian i Kewei Zhang. "Basis divisors and balanced metrics". Journal für die reine und angewandte Mathematik (Crelles Journal) 2021, nr 778 (29.04.2021): 171–218. http://dx.doi.org/10.1515/crelle-2021-0017.

Pełny tekst źródła
Streszczenie:
Abstract Using log canonical thresholds and basis divisors Fujita–Odaka introduced purely algebro-geometric invariants δ m {\delta_{m}} whose limit in m is now known to characterize uniform K-stability on a Fano variety. As shown by Blum–Jonsson this carries over to a general polarization, and together with work of Berman, Boucksom, and Jonsson, it is now known that the limit of these δ m {\delta_{m}} -invariants characterizes uniform Ding stability. A basic question since Fujita–Odaka’s work has been to find an analytic interpretation of these invariants. We show that each δ m {\delta_{m}} is the coercivity threshold of a quantized Ding functional on the mth Bergman space and thus characterizes the existence of balanced metrics. This approach has a number of applications. The most basic one is that it provides an alternative way to compute these invariants, which is new even for ℙ n {{\mathbb{P}}^{n}} . Second, it allows us to introduce algebraically defined invariants that characterize the existence of Kähler–Ricci solitons (and the more general g-solitons of Berman–Witt Nyström), as well as coupled versions thereof. Third, it leads to approximation results involving balanced metrics in the presence of automorphisms that extend some results of Donaldson.
Style APA, Harvard, Vancouver, ISO itp.
22

Hamano, Sachiko, i Hiroshi Yamaguchi †. "A Note on variation of bergman metrics on riemann surfaces under pseudoconvexity". Complex Variables, Theory and Application: An International Journal 49, nr 7-9 (10.06.2004): 673–79. http://dx.doi.org/10.1080/02781070412331272523.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Li, Song-Ying, i Ezequias Simon. "Boundary behavior of harmonic functions in metrics of Bergman type on the polydisc". American Journal of Mathematics 124, nr 5 (2002): 1045–57. http://dx.doi.org/10.1353/ajm.2002.0028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Feng, Zhiming. "On the first two coefficients of the Bergman function expansion for radial metrics". Journal of Geometry and Physics 119 (wrzesień 2017): 256–71. http://dx.doi.org/10.1016/j.geomphys.2017.05.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Yin, Weiping. "The comparison theorem for the bergman and kobayashi metrics on certain pseudoconvex domains". Complex Variables, Theory and Application: An International Journal 34, nr 4 (grudzień 1997): 351–73. http://dx.doi.org/10.1080/17476939708815059.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Wang, Fang. "On the scattering operators for ACHE metrics of Bergman type on strictly pseudoconvex domains". Advances in Mathematics 309 (marzec 2017): 306–33. http://dx.doi.org/10.1016/j.aim.2017.01.020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Rubinstein, Yanir A., i Steve Zelditch. "Bergman approximations of harmonic maps into the space of Kahler metrics on toric varieties". Journal of Symplectic Geometry 8, nr 3 (2010): 239–65. http://dx.doi.org/10.4310/jsg.2010.v8.n3.a1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Li, Song-Ying, i Ezequias Simon. "On Proper Harmonic Maps between Strictly Pseudoconvex Domains with Kahler Metrics of Bergman Type". Asian Journal of Mathematics 11, nr 2 (2007): 251–76. http://dx.doi.org/10.4310/ajm.2007.v11.n2.a5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Li, Song-Ying, i Lei Ni. "On the holomorphicity of proper harmonic maps between unit balls with the Bergman metrics". Mathematische Annalen 316, nr 2 (1.02.2000): 333–54. http://dx.doi.org/10.1007/s002080050015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Zhao, Xiaoxia, Li Ding i Weiping Yin. "The comparison theorem for Bergman and Kobayashi metrics on Cartan-Hartogs domain of the second type*". Progress in Natural Science 14, nr 2 (1.02.2004): 105–12. http://dx.doi.org/10.1080/10020070412331343221.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Weiping, Yin, i Zhao Xiaoxia. "The Comparison Theorem for Bergman and Kobayashi Metrics on Cartan-Hartogs Domain of the Third Type". Complex Variables, Theory and Application: An International Journal 47, nr 3 (marzec 2002): 183–201. http://dx.doi.org/10.1080/02781070290001427.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Kai, Chifune, i Takeo Ohsawa. "A Note on the Bergman metric of Bounded homogeneous Domains". Nagoya Mathematical Journal 186 (2007): 157–63. http://dx.doi.org/10.1017/s0027763000009399.

Pełny tekst źródła
Streszczenie:
AbstractWe show that the Bergman metric of a bounded homogeneous domain has a potential function whose gradient has a constant norm with respect to the Bergman metric, and further that this constant is independent of the choice of such a potential function.
Style APA, Harvard, Vancouver, ISO itp.
33

Aryasomayajula, Anilatmaja, i Indranil Biswas. "Bergman kernel on Riemann surfaces and Kähler metric on symmetric products". International Journal of Mathematics 30, nr 14 (8.10.2019): 1950071. http://dx.doi.org/10.1142/s0129167x1950071x.

Pełny tekst źródła
Streszczenie:
Let [Formula: see text] be a compact hyperbolic Riemann surface equipped with the Poincaré metric. For any integer [Formula: see text], we investigate the Bergman kernel associated to the holomorphic Hermitian line bundle [Formula: see text], where [Formula: see text] is the holomorphic cotangent bundle of [Formula: see text]. Our first main result estimates the corresponding Bergman metric on [Formula: see text] in terms of the Poincaré metric. We then consider a certain natural embedding of the symmetric product of [Formula: see text] into a Grassmannian parametrizing subspaces of fixed dimension of the space of all global holomorphic sections of [Formula: see text]. The Fubini–Study metric on the Grassmannian restricts to a Kähler metric on the symmetric product of [Formula: see text]. The volume form for this restricted metric on the symmetric product is estimated in terms of the Bergman kernel of [Formula: see text] and the volume form for the orbifold Kähler form on the symmetric product given by the Poincaré metric on [Formula: see text].
Style APA, Harvard, Vancouver, ISO itp.
34

Ruan, Wei-Dong. "Canonical coordinates and Bergmann metrics". Communications in Analysis and Geometry 6, nr 3 (1998): 589–631. http://dx.doi.org/10.4310/cag.1998.v6.n3.a5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Dong, Robert Xin. "Boundary asymptotics of the relative Bergman kernel metric for hyperelliptic curves". Complex Manifolds 4, nr 1 (23.02.2017): 7–15. http://dx.doi.org/10.1515/coma-2017-0002.

Pełny tekst źródła
Streszczenie:
Abstract We survey variations of the Bergman kernel and their asymptotic behaviors at degeneration. For a Legendre family of elliptic curves, the curvature form of the relative Bergman kernel metric is equal to the Poincaré metric on ℂ \ {0,1}. The cases of other elliptic curves are either the same or trivial. Two proofs depending on elliptic functions’ special properties and Abelian differentials’ Taylor expansions are discussed, respectively. For a holomorphic family of hyperelliptic nodal or cuspidal curves and their Jacobians, we announce our results on the Bergman kernel asymptotics near various singularities. For genus-two curves particularly, asymptotic formulas with precise coefficients involving the complex structure information are written down explicitly.
Style APA, Harvard, Vancouver, ISO itp.
36

Herbort, Gregor. "Localization lemmas for the Bergman metric at plurisubharmonic peak points". Nagoya Mathematical Journal 171 (2003): 107–25. http://dx.doi.org/10.1017/s0027763000025538.

Pełny tekst źródła
Streszczenie:
AbstractLet D be a bounded pseudoconvex domain in ℂn and ζ ∈ D. By KD and BD we denote the Bergman kernel and metric of D, respectively. Given a ball B = B(ζ, R), we study the behavior of the ratio KD/KD∩B(w) when w ∈ D ∩ B tends towards ζ. It is well-known, that it remains bounded from above and below by a positive constant. We show, that the ratio tends to 1, as w tends to ζ, under an additional assumption on the pluricomplex Green function D(·, w) of D with pole at w, namely that the diameter of the sublevel sets Aw :={z ∈ D | D(z, w) < −1} tends to zero, as w → ζ. A similar result is obtained also for the Bergman metric. In this case we also show that the extremal function associated to the Bergman kernel has the concentration of mass property introduced in [DiOh1], where the question was discussed how to recognize a weight function from the associated Bergman space. The hypothesis concerning the set Aw is satisfied for example, if the domain is regular in the sense of Diederich-Fornæss, ([DiFo2]).
Style APA, Harvard, Vancouver, ISO itp.
37

Krantz, Steven G., i Jiye Yu. "On the Bergman invariant and curvatures of the Bergman metric". Illinois Journal of Mathematics 40, nr 2 (czerwiec 1996): 226–44. http://dx.doi.org/10.1215/ijm/1255986102.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

CHEN, BO-YONG. "THE BERGMAN METRIC ON TEICHMÜLLER SPACE". International Journal of Mathematics 15, nr 10 (grudzień 2004): 1085–91. http://dx.doi.org/10.1142/s0129167x04002697.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Barletta, Elisabetta, Sorin Dragomir i Francesco Esposito. "Weighted Bergman Kernels and Mathematical Physics". Axioms 9, nr 2 (29.04.2020): 48. http://dx.doi.org/10.3390/axioms9020048.

Pełny tekst źródła
Streszczenie:
We review several results in the theory of weighted Bergman kernels. Weighted Bergman kernels generalize ordinary Bergman kernels of domains Ω ⊂ C n but also appear locally in the attempt to quantize classical states of mechanical systems whose classical phase space is a complex manifold, and turn out to be an efficient computational tool that is useful for the calculation of transition probability amplitudes from a classical state (identified to a coherent state) to another. We review the weighted version (for weights of the form γ = | φ | m on strictly pseudoconvex domains Ω = { φ < 0 } ⊂ C n ) of Fefferman’s asymptotic expansion of the Bergman kernel and discuss its possible extensions (to more general classes of weights) and implications, e.g., such as related to the construction and use of Fefferman’s metric (a Lorentzian metric on ∂ Ω × S 1 ). Several open problems are indicated throughout the survey.
Style APA, Harvard, Vancouver, ISO itp.
40

Chen, Bo-Yong. "Boundary behavior of the Bergman metric". Nagoya Mathematical Journal 168 (2002): 27–40. http://dx.doi.org/10.1017/s0027763000008333.

Pełny tekst źródła
Streszczenie:
AbstractLet Ω be a bounded pseudoconvex domain in Cn. We give sufficient conditions for the Bergman metric to go to infinity uniformly at some boundary point, which is stated by the existence of a Hölder continuous plurisubharmonic peak function at this point or the verification of property (P) (in the sense of Coman) which is characterized by the pluricomplex Green function.
Style APA, Harvard, Vancouver, ISO itp.
41

Diederich, K., i J. E. Fornæss. "Boundary behavior of the Bergman metric". Asian Journal of Mathematics 22, nr 2 (2018): 291–98. http://dx.doi.org/10.4310/ajm.2018.v22.n2.a6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Herbort, Gregor. "The Bergman metric on hyperconvex domains". Mathematische Zeitschrift 232, nr 1 (wrzesień 1999): 183–96. http://dx.doi.org/10.1007/pl00004754.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Chen, Bo-Yong. "Bergman completeness of hyperconvex manifolds". Nagoya Mathematical Journal 175 (2004): 165–70. http://dx.doi.org/10.1017/s0027763000008941.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Choe, Boo Rim, i Heungsu Yi. "Representations and interpolations of harmonic Bergman functions on half-spaces". Nagoya Mathematical Journal 151 (czerwiec 1998): 51–89. http://dx.doi.org/10.1017/s0027763000025174.

Pełny tekst źródła
Streszczenie:
Abstract.On the setting of the half-space of the euclidean n-space, we prove representation theorems and interpolation theorems for harmonic Bergman functions in a constructive way. We also consider the harmonic (little) Bloch spaces as limiting spaces. Our results show that well-known phenomena for holomorphic cases continue to hold. Our proofs of representation theorems also yield a uniqueness theorem for harmonic Bergman functions. As an application of interpolation theorems, we give a distance estimate to the harmonic little Bloch space. In the course of the proofs, pseudohyperbolic balls are used as substitutes for Bergman metric balls in the holomorphic case.
Style APA, Harvard, Vancouver, ISO itp.
45

Kim, Jong Jin. "A METRIC INDUCED BY THE BERGMAN KERNEL". Honam Mathematical Journal 36, nr 4 (25.12.2014): 853–62. http://dx.doi.org/10.5831/hmj.2014.36.4.853.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Błocki, Zbigniew. "Some estimates for the Bergman Kernel and Metric in Terms of Logarithmic Capacity". Nagoya Mathematical Journal 185 (2007): 143–50. http://dx.doi.org/10.1017/s0027763000025782.

Pełny tekst źródła
Streszczenie:
AbstractFor a bounded domain Ω on the plane we show the inequality cΩ(z)2 ≤ 2πKΩ(z), z ∈ Ω, where cΩ(z) is the logarithmic capacity of the complement ℂ\Ω with respect to z and KΩ is the Bergman kernel. We thus improve a constant in an estimate due to T. Ohsawa but fall short of the inequality cΩ(z)2 ≤ πKΩ(z) conjectured by N. Suita. The main tool we use is a comparison, due to B. Berndtsson, of the kernels for the weighted complex Laplacian and the Green function. We also show a similar estimate for the Bergman metric and analogous results in several variables.
Style APA, Harvard, Vancouver, ISO itp.
47

Dinew, Żywomir. "On the completeness of a metric related to the Bergman metric". Monatshefte für Mathematik 172, nr 3-4 (3.05.2013): 277–91. http://dx.doi.org/10.1007/s00605-013-0501-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Suzuki, Masaaki. "The generalized Schwarz lemma for the Bergman metric". Pacific Journal of Mathematics 117, nr 2 (1.04.1985): 429–42. http://dx.doi.org/10.2140/pjm.1985.117.429.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Boas, Harold P., Emil J. Straube i Ji Ye Yu. "Boundary limits of the Bergman kernel and metric." Michigan Mathematical Journal 42, nr 3 (1995): 449–61. http://dx.doi.org/10.1307/mmj/1029005306.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Błocki, Zbigniew. "The Bergman metric and the pluricomplex Green function". Transactions of the American Mathematical Society 357, nr 7 (1.03.2005): 2613–25. http://dx.doi.org/10.1090/s0002-9947-05-03738-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii