Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Bayesian recovery.

Artykuły w czasopismach na temat „Bayesian recovery”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Bayesian recovery”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Zhao, Juan, Xia Bai, Tao Shan, and Ran Tao. "Block Sparse Bayesian Recovery with Correlated LSM Prior." Wireless Communications and Mobile Computing 2021 (October 6, 2021): 1–11. http://dx.doi.org/10.1155/2021/9942694.

Pełny tekst źródła
Streszczenie:
Compressed sensing can recover sparse signals using a much smaller number of samples than the traditional Nyquist sampling theorem. Block sparse signals (BSS) with nonzero coefficients occurring in clusters arise naturally in many practical scenarios. Utilizing the sparse structure can improve the recovery performance. In this paper, we consider recovering arbitrary BSS with a sparse Bayesian learning framework by inducing correlated Laplacian scale mixture (LSM) prior, which can model the dependence of adjacent elements of the block sparse signal, and then a block sparse Bayesian learning alg
Style APA, Harvard, Vancouver, ISO itp.
2

Wang, Haitao, Qunyi He, Shiwei Peng, and Xiangyang Zeng. "Indoor Sound Source Localization via Inverse Element-Free Simulation Based on Joint Sparse Recovery." Electronics 13, no. 1 (2023): 69. http://dx.doi.org/10.3390/electronics13010069.

Pełny tekst źródła
Streszczenie:
Indoor sound source localization is a key technique in many engineering applications, and an inverse element-free method based on joint sparse recovery in a Bayesian framework is proposed for reverberant environments. In this method, a discrete wave model is constructed to represent the relationships between the sampled sound pressure and the source intensity distribution, and localization in the reverberant environment is realized via inversion from the wave model. By constructing a compact supporting domain, the source intensity can be sparsely represented in subdomains, and the sparse Bayes
Style APA, Harvard, Vancouver, ISO itp.
3

Calvetti, D., and E. Somersalo. "Recovery of shapes: hypermodels and Bayesian learning." Journal of Physics: Conference Series 124 (July 1, 2008): 012014. http://dx.doi.org/10.1088/1742-6596/124/1/012014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Sun, Shouwang, Sheng Jiao, Qi Hu, et al. "Missing Structural Health Monitoring Data Recovery Based on Bayesian Matrix Factorization." Sustainability 15, no. 4 (2023): 2951. http://dx.doi.org/10.3390/su15042951.

Pełny tekst źródła
Streszczenie:
The exposure of bridge health-monitoring systems to extreme conditions often results in missing data, which constrains the health monitoring system from working. Therefore, there is an urgent need for an efficient data cleaning method. With the development of big data and machine-learning techniques, several methods for missing-data recovery have emerged. However, optimization-based methods may experience overfitting and demand extensive tuning of parameters, and trained models may still have substantial errors when applied to unseen datasets. Furthermore, many methods can only process monitor
Style APA, Harvard, Vancouver, ISO itp.
5

Johnson, Michael-David, Jacques Cuenca, Timo Lähivaara, et al. "Bayesian reconstruction of surface shape from phaseless scattered acoustic data." Journal of the Acoustical Society of America 156, no. 6 (2024): 4024–36. https://doi.org/10.1121/10.0034549.

Pełny tekst źródła
Streszczenie:
The recovery of the properties or geometry of a rough surface from scattered sound is of interest in many applications, including medicine, water engineering, or structural health monitoring. Existing approaches to reconstruct the roughness profile of a scattering surface based on wave scattering have no intrinsic way of predicting the uncertainty of the reconstruction. In an attempt to recover this uncertainty, a Bayesian framework, and more explicitly, an adaptive Metropolis scheme, is used to infer the properties of a rough surface, parameterised as a superposition of sinusoidal components.
Style APA, Harvard, Vancouver, ISO itp.
6

Gan, Wei, Lu-ping Xu, Zhe Su, and Hua Zhang. "Bayesian Hypothesis Testing Based Recovery for Compressed Sensing." Journal of Electronics & Information Technology 33, no. 11 (2011): 2640–46. http://dx.doi.org/10.3724/sp.j.1146.2011.00151.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Long, Zhen, Ce Zhu, Jiani Liu, and Yipeng Liu. "Bayesian Low Rank Tensor Ring for Image Recovery." IEEE Transactions on Image Processing 30 (2021): 3568–80. http://dx.doi.org/10.1109/tip.2021.3062195.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Korki, Mehdi, Hadi Zayyani, and Jingxin Zhang. "Bayesian Hypothesis Testing for Block Sparse Signal Recovery." IEEE Communications Letters 20, no. 3 (2016): 494–97. http://dx.doi.org/10.1109/lcomm.2016.2518169.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Brooks, S. P., E. A. Catchpole, B. J. T. Morgan, and S. C. Barry. "On the Bayesian Analysis of Ring-Recovery Data." Biometrics 56, no. 3 (2000): 951–56. http://dx.doi.org/10.1111/j.0006-341x.2000.00951.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Wang, Lu, Lifan Zhao, Guoan Bi, and Chunru Wan. "Hierarchical Sparse Signal Recovery by Variational Bayesian Inference." IEEE Signal Processing Letters 21, no. 1 (2014): 110–13. http://dx.doi.org/10.1109/lsp.2013.2292589.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Huang, Kaide, Yao Guo, Xuemei Guo, and Guoli Wang. "Heterogeneous Bayesian compressive sensing for sparse signal recovery." IET Signal Processing 8, no. 9 (2014): 1009–17. http://dx.doi.org/10.1049/iet-spr.2013.0501.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Ahmed, Irfan, Aftab Khan, Nasir Ahmad, NasruMinallah, and Hazrat Ali. "Speech Signal Recovery Using Block Sparse Bayesian Learning." Arabian Journal for Science and Engineering 45, no. 3 (2019): 1567–79. http://dx.doi.org/10.1007/s13369-019-04080-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Zhang, Shuanghui, Yongxiang Liu, Xiang Li, and Guoan Bi. "Variational Bayesian Sparse Signal Recovery With LSM Prior." IEEE Access 5 (2017): 26690–702. http://dx.doi.org/10.1109/access.2017.2765831.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

LI, Jia. "Joint Bayesian and Greedy Recovery for Compressive Sensing." Chinese Journal of Electronics 29, no. 5 (2020): 945–51. http://dx.doi.org/10.1049/cje.2020.08.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Brooks, S. P., R. King, and B. J. T. Morgan. "A Bayesian approach to combining animal abundance and demographic data." Animal Biodiversity and Conservation 27, no. 1 (2004): 515–29. http://dx.doi.org/10.32800/abc.2004.27.0515.

Pełny tekst źródła
Streszczenie:
In studies of wild animals, one frequently encounters both count and mark-recapture-recovery data. Here, we consider an integrated Bayesian analysis of ring¿recovery and count data using a state-space model. We then impose a Leslie-matrix-based model on the true population counts describing the natural birth-death and age transition processes. We focus upon the analysis of both count and recovery data collected on British lapwings (Vanellus vanellus) combined with records of the number of frost days each winter. We demonstrate how the combined analysis of these data provides a more robust infe
Style APA, Harvard, Vancouver, ISO itp.
16

Zhanjun, Hao, Li Beibei, and Dang Xiaochao. "A Signal Recovery Method Based on Bayesian Compressive Sensing." Mathematical Problems in Engineering 2019 (February 11, 2019): 1–13. http://dx.doi.org/10.1155/2019/7235239.

Pełny tekst źródła
Streszczenie:
In a precise positioning system, weak signal errors caused by the influence of a human body on signal transmission in complex environments are a main cause of the reduced reliability of communication and positioning accuracy. Therefore, eliminating the influence of interference from human crawling waves on signal transmissions in complex environments is an important task in improving positioning systems. To conclude, an experimental environment is designed in this paper and a method using the Ultra-Wideband (UWB) Local Positioning System II (UWB LPS), called Bayesian Compressed Sensing-Crawlin
Style APA, Harvard, Vancouver, ISO itp.
17

Riecke, Thomas V., Dan Gibson, Alan G. Leach, Mark S. Lindberg, Michael Schaub, and James S. Sedinger. "Bayesian mark–recapture–resight–recovery models: increasing user flexibility in the BUGS language." Ecosphere 12, no. 12 (2021): e03810. https://doi.org/10.5281/zenodo.5996370.

Pełny tekst źródła
Streszczenie:
<strong>Abstract</strong> Estimating demographic parameters of interest is a critical component of applied conservation biology and evolutionary ecology, where demographic models and demographic data have become increasingly complex over the last several decades. These advances have been spurred by the development and use of information theoretic approaches, programs such as MARK and SURGE, and Bayesian inference. The use of Bayesian analyses has also become increasingly popular, where WinBUGS, JAGS, Stan, and NIMBLE provide increased user flexibility. Despite recent advances in Bayesian demog
Style APA, Harvard, Vancouver, ISO itp.
18

Engemann, Kristie M., and Michael T. Owyang. "WHATEVER HAPPENED TO THE BUSINESS CYCLE? A BAYESIAN ANALYSIS OF JOBLESS RECOVERIES." Macroeconomic Dynamics 14, no. 5 (2010): 709–26. http://dx.doi.org/10.1017/s1365100509990812.

Pełny tekst źródła
Streszczenie:
During the typical recovery from U.S. postwar period economic downturns, employment recovers to its prerecession level within months of the output trough. However, during the past two recoveries, employment has taken up to three years to achieve its prerecession benchmark. We propose a formal empirical model of business cycles with recovery periods to demonstrate that the past two recoveries have been statistically different from previous experiences. We find that this difference can be attributed to a shift in the speed of transition between business cycle regimes. Moreover, we find this shif
Style APA, Harvard, Vancouver, ISO itp.
19

Yi, Ming, Meng Wang, Evangelos Farantatos, and Tapas Barik. "Bayesian robust hankel matrix completion with uncertainty modeling for synchrophasor data recovery." ACM SIGEnergy Energy Informatics Review 2, no. 1 (2022): 1–19. http://dx.doi.org/10.1145/3527579.3527580.

Pełny tekst źródła
Streszczenie:
Synchrophasor data suffer from quality issues like missing and bad data. Exploiting the low-rankness of the Hankel matrix of the synchrophasor data, this paper formulates the data recovery problem as a robust low-rank Hankel matrix completion problem and proposes a Bayesian data recovery method that estimates the posterior distribution of synchrophasor data from partial observations. In contrast to the deterministic approaches, our proposed Bayesian method provides an uncertainty index to evaluate the confidence of each estimation. To the best of our knowledge, this is the first method that pr
Style APA, Harvard, Vancouver, ISO itp.
20

Routtenberg, Tirza. "Non-Bayesian Estimation Framework for Signal Recovery on Graphs." IEEE Transactions on Signal Processing 69 (2021): 1169–84. http://dx.doi.org/10.1109/tsp.2021.3054995.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Rajeshwari, T., and C. Thangamani. "Attack Impact Discovery and Recovery with Dynamic Bayesian Networks." Asian Journal of Computer Science and Technology 8, S1 (2019): 74–79. http://dx.doi.org/10.51983/ajcst-2019.8.s1.1953.

Pełny tekst źródła
Streszczenie:
The network attacks are discovered using the Intrusion Detection Systems (IDS). Anomaly, signature and compound attack detection schemes are employed to fetch malicious data traffic activities. The attack impact analysis operations are carried out to discover the malicious objects in the network. The system objects are contaminated with process injection or hijacking. The attack ramification model discovers the contaminated objects. The dependency networks are built to model the information flow over the objects in the network. The dependency network is a directed graph built to indicate the d
Style APA, Harvard, Vancouver, ISO itp.
22

Almond, Russell, Duanli Yan, and Lisa Hemat. "Parameter Recovery Studies With a Diagnostic Bayesian Network Model." Behaviormetrika 35, no. 2 (2008): 159–85. http://dx.doi.org/10.2333/bhmk.35.159.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Giri, Ritwik, and Bhaskar Rao. "Learning Distributional Parameters for Adaptive Bayesian Sparse Signal Recovery." IEEE Computational Intelligence Magazine 11, no. 4 (2016): 14–23. http://dx.doi.org/10.1109/mci.2016.2601700.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Parlikad, Ajith Kumar, and Duncan McFarlane. "A Bayesian decision support system for vehicle component recovery." International Journal of Sustainable Manufacturing 1, no. 4 (2009): 415. http://dx.doi.org/10.1504/ijsm.2009.031362.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Wang, Lu, Lifan Zhao, Lei Yu, Jingjing Wang, and Guoan Bi. "Structured Bayesian learning for recovery of clustered sparse signal." Signal Processing 166 (January 2020): 107255. http://dx.doi.org/10.1016/j.sigpro.2019.107255.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Razi, Abolfazl. "Bayesian Signal Recovery Under Measurement Matrix Uncertainty: Performance Analysis." IEEE Access 7 (2019): 102356–65. http://dx.doi.org/10.1109/access.2019.2930236.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Gong, Ting. "Bayesian sparse signal recovery based on log-Laplacian prior." Journal of Applied Remote Sensing 12, no. 04 (2018): 1. http://dx.doi.org/10.1117/1.jrs.12.045003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Huang, Zhenhao, Guoxu Zhou, Yuning Qiu, Xinqi Chen, and Qibin Zhao. "Kernel Bayesian tensor ring decomposition for multiway data recovery." Neural Networks 189 (September 2025): 107500. https://doi.org/10.1016/j.neunet.2025.107500.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Green, Dylan, Jonathan Lindbloom, and Anne Gelb. "Complex-Valued Signal Recovery Using a Generalized Bayesian LASSO." SIAM/ASA Journal on Uncertainty Quantification 13, no. 2 (2025): 831–61. https://doi.org/10.1137/24m1644778.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Bonkhoff, Anna K., Thomas Hope, Danilo Bzdok, et al. "Bringing proportional recovery into proportion: Bayesian modelling of post-stroke motor impairment." Brain 143, no. 7 (2020): 2189–206. http://dx.doi.org/10.1093/brain/awaa146.

Pełny tekst źródła
Streszczenie:
Abstract Accurate predictions of motor impairment after stroke are of cardinal importance for the patient, clinician, and healthcare system. More than 10 years ago, the proportional recovery rule was introduced by promising that high-fidelity predictions of recovery following stroke were based only on the initially lost motor function, at least for a specific fraction of patients. However, emerging evidence suggests that this recovery rule is subject to various confounds and may apply less universally than previously assumed. Here, we systematically revisited stroke outcome predictions by appl
Style APA, Harvard, Vancouver, ISO itp.
31

Kosgolla, Janaka, Doug Smith, Reinhart Crystal, and Evans Jennifer. "Am I in Recovery? Bayesian Network Analysis to Understand Mental Models of Adolescent Recovery." Drug and Alcohol Dependence 260 (July 2024): 110587. http://dx.doi.org/10.1016/j.drugalcdep.2023.110587.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Adams, Jadie, Steven Lu, Krzysztof M. Gorski, Graca Rocha, and Kiri L. Wagstaff. "Cosmic Microwave Background Recovery: A Graph-Based Bayesian Convolutional Network Approach." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 13 (2023): 15640–46. http://dx.doi.org/10.1609/aaai.v37i13.26854.

Pełny tekst źródła
Streszczenie:
The cosmic microwave background (CMB) is a significant source of knowledge about the origin and evolution of our universe. However, observations of the CMB are contaminated by foreground emissions, obscuring the CMB signal and reducing its efficacy in constraining cosmological parameters. We employ deep learning as a data-driven approach to CMB cleaning from multi-frequency full-sky maps. In particular, we develop a graph-based Bayesian convolutional neural network based on the U-Net architecture that predicts cleaned CMB with pixel-wise uncertainty estimates. We demonstrate the potential of t
Style APA, Harvard, Vancouver, ISO itp.
33

Shekaramiz, Mohammad, and Todd K. Moon. "Compressive Sensing via Variational Bayesian Inference under Two Widely Used Priors: Modeling, Comparison and Discussion." Entropy 25, no. 3 (2023): 511. http://dx.doi.org/10.3390/e25030511.

Pełny tekst źródła
Streszczenie:
Compressive sensing is a sub-Nyquist sampling technique for efficient signal acquisition and reconstruction of sparse or compressible signals. In order to account for the sparsity of the underlying signal of interest, it is common to use sparsifying priors such as Bernoulli–Gaussian-inverse Gamma (BGiG) and Gaussian-inverse Gamma (GiG) priors on the components of the signal. With the introduction of variational Bayesian inference, the sparse Bayesian learning (SBL) methods for solving the inverse problem of compressive sensing have received significant interest as the SBL methods become more e
Style APA, Harvard, Vancouver, ISO itp.
34

Budiana, Stevanny, Felivia Kusnadi, and Robyn Irawan. "BAYESIAN ADDITIVE REGRESSION TREE APPLICATION FOR PREDICTING MATERNITY RECOVERY RATE OF GROUP LONG-TERM DISABILITY INSURANCE." BAREKENG: Jurnal Ilmu Matematika dan Terapan 17, no. 1 (2023): 0135–46. http://dx.doi.org/10.30598/barekengvol17iss1pp0135-0146.

Pełny tekst źródła
Streszczenie:
Bayesian Additive Regression Tree (BART) is a sum-of-trees model used to approximate classification or regression cases. The main idea of this method is to use a prior distribution to keep the tree size small and a likelihood from data to get the posterior. By fixing the tree size as small as possible, the approximation of each tree would have a little effect on the posterior, which is the sum of all output from all the trees used. Bayesian additive regression tree method will be used for predicting the maternity recovery rate of group long-term disability insurance data from the Society of Ac
Style APA, Harvard, Vancouver, ISO itp.
35

Benazzouza, Salma, Mohammed Ridouani, Fatima Salahdine, and Aawatif Hayar. "Chaotic Compressive Spectrum Sensing Based on Chebyshev Map for Cognitive Radio Networks." Symmetry 13, no. 3 (2021): 429. http://dx.doi.org/10.3390/sym13030429.

Pełny tekst źródła
Streszczenie:
Recently, the chaotic compressive sensing paradigm has been widely used in many areas, due to its ability to reduce data acquisition time with high security. For cognitive radio networks (CRNs), this mechanism aims at detecting the spectrum holes based on few measurements taken from the original sparse signal. To ensure a high performance of the acquisition and recovery process, the choice of a suitable sensing matrix and the appropriate recovery algorithm should be done carefully. In this paper, a new chaotic compressive spectrum sensing (CSS) solution is proposed for cooperative CRNs based o
Style APA, Harvard, Vancouver, ISO itp.
36

Li, Junlin, Wei Zhou, and Cheng Cheng. "Adaptive support-driven Bayesian reweighted algorithm for sparse signal recovery." Signal, Image and Video Processing 15, no. 6 (2021): 1295–302. http://dx.doi.org/10.1007/s11760-021-01860-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

SONG, Jinyang, Feng SHEN, Xiaobo CHEN, and Di ZHAO. "Robust Sparse Signal Recovery in Impulsive Noise Using Bayesian Methods." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E101.A, no. 1 (2018): 273–78. http://dx.doi.org/10.1587/transfun.e101.a.273.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Dunham, Kylee D., Erik E. Osnas, Charles J. Frost, Julian B. Fischer, and James B. Grand. "Assessing recovery of spectacled eiders using a Bayesian decision analysis." PLOS ONE 16, no. 7 (2021): e0253895. http://dx.doi.org/10.1371/journal.pone.0253895.

Pełny tekst źródła
Streszczenie:
Assessing species status and making classification decisions under the Endangered Species Act is a critical step towards effective species conservation. However, classification decisions are liable to two errors: i) failing to classify a species as threatened or endangered that should be classified (underprotection), or ii) classifying a species as threatened or endangered when it is not warranted (overprotection). Recent surveys indicate threatened spectacled eider populations are increasing in western Alaska, prompting the U.S. Fish and Wildlife Service to reconsider the federal listing stat
Style APA, Harvard, Vancouver, ISO itp.
39

Jiao, Libin, Hao Wu, Haodi Wang, and Rongfang Bie. "Text Recovery via Deep CNN-BiLSTM Recognition and Bayesian Inference." IEEE Access 6 (2018): 76416–28. http://dx.doi.org/10.1109/access.2018.2882592.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Knapik, B. T., A. W. van der Vaart, and J. H. van Zanten. "Bayesian Recovery of the Initial Condition for the Heat Equation." Communications in Statistics - Theory and Methods 42, no. 7 (2013): 1294–313. http://dx.doi.org/10.1080/03610926.2012.681417.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Qian, W., and D. M. Titterington. "Bayesian image restoration: an application to edge-preserving surface recovery." IEEE Transactions on Pattern Analysis and Machine Intelligence 15, no. 7 (1993): 748–52. http://dx.doi.org/10.1109/34.221174.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Cevri, M., and D. Üstündağ. "Bayesian recovery of sinusoids from noisy data with parallel tempering." IET Signal Processing 6, no. 7 (2012): 673. http://dx.doi.org/10.1049/iet-spr.2011.0335.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Ali, Anum, Mudassir Masood, Muhammad S. Sohail, Samir N. Al-Ghadhban, and Tareq Y. Al-Naffouri. "Narrowband Interference Mitigation in SC-FDMA Using Bayesian Sparse Recovery." IEEE Transactions on Signal Processing 64, no. 24 (2016): 6471–84. http://dx.doi.org/10.1109/tsp.2016.2614484.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Ortega-Argueta, Alejandro. "Improving recovery planning for threatened species through Bayesian belief networks." Biological Conservation 241 (January 2020): 108320. http://dx.doi.org/10.1016/j.biocon.2019.108320.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Khanna, Saurabh, and Chandra R. Murthy. "Decentralized Joint-Sparse Signal Recovery: A Sparse Bayesian Learning Approach." IEEE Transactions on Signal and Information Processing over Networks 3, no. 1 (2017): 29–45. http://dx.doi.org/10.1109/tsipn.2016.2612120.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Parlikad, Ajith Kumar, and Duncan McFarlane. "Value of information in product recovery decisions: a Bayesian approach." International Journal of Sustainable Engineering 3, no. 2 (2010): 106–20. http://dx.doi.org/10.1080/19397030903499810.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Wang, Dan, and Zhuhong Zhang. "Variational Bayesian inference based robust multiple measurement sparse signal recovery." Digital Signal Processing 89 (June 2019): 131–44. http://dx.doi.org/10.1016/j.dsp.2019.03.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Widarsson, Björn, and Erik Dotzauer. "Bayesian network-based early-warning for leakage in recovery boilers." Applied Thermal Engineering 28, no. 7 (2008): 754–60. http://dx.doi.org/10.1016/j.applthermaleng.2007.06.016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Liu, Kun, Tong Wang, and Weijun Huang. "An Efficient Sparse Recovery STAP Algorithm for Airborne Bistatic Radars Based on Atomic Selection under the Bayesian Framework." Remote Sensing 16, no. 14 (2024): 2534. http://dx.doi.org/10.3390/rs16142534.

Pełny tekst źródła
Streszczenie:
The traditional sparse recovery (SR) space-time adaptive processing (STAP) algorithms are greatly affected by grid mismatch, leading to poor performance in airborne bistatic radar clutter suppression. In order to address this issue, this paper proposes an SR STAP algorithm for airborne bistatic radars based on atomic selection under the Bayesian framework. This method adopts the idea of atomic selection for the process of Bayesian inference, continuously evaluating the contribution of atoms to the likelihood function to add or remove atoms, and then using the selected atoms to estimate the clu
Style APA, Harvard, Vancouver, ISO itp.
50

Bonkhoff, Anna K., Tom Hope, Danilo Bzdok, et al. "Recovery after stroke: the severely impaired are a distinct group." Journal of Neurology, Neurosurgery & Psychiatry 93, no. 4 (2021): 369–78. http://dx.doi.org/10.1136/jnnp-2021-327211.

Pełny tekst źródła
Streszczenie:
IntroductionStroke causes different levels of impairment and the degree of recovery varies greatly between patients. The majority of recovery studies are biased towards patients with mild-to-moderate impairments, challenging a unified recovery process framework. Our aim was to develop a statistical framework to analyse recovery patterns in patients with severe and non-severe initial impairment and concurrently investigate whether they recovered differently.MethodsWe designed a Bayesian hierarchical model to estimate 3–6 months upper limb Fugl-Meyer (FM) scores after stroke. When focusing on th
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!