Gotowa bibliografia na temat „Batteries – Vieillissement”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Batteries – Vieillissement”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Batteries – Vieillissement"
Thomas-Antérion, C., A. Marion, B. Laurent, S. Laporte-Simitsidis, N. Foyatier-Michel i D. Michel. "Vieillissement et mémoire procédurale. Étude d'une batterie de tests sur microordinateur". La Revue de Médecine Interne 15, nr 9 (styczeń 1994): 581–88. http://dx.doi.org/10.1016/s0248-8663(05)82503-2.
Pełny tekst źródłaRico Duarte, L., M. Jiménez, A. Syssau i M. Launay. "Étude de la sensibilité d'une batterie d'épreuves sémantiques au vieillissement normal et à l'évolution de la maladie d'Alzheimer". European Review of Applied Psychology 54, nr 3 (wrzesień 2004): 143–55. http://dx.doi.org/10.1016/j.erap.2003.10.002.
Pełny tekst źródłaRozprawy doktorskie na temat "Batteries – Vieillissement"
Edouard, Clément. "Vieillissement des batteries Li-ion de traction : des mécanismes vers le vieillissement accéléré". Thesis, Compiègne, 2015. http://www.theses.fr/2015COMP2221/document.
Pełny tekst źródłaDue to their high power and energy densities, Li-ion batteries are the leading systems for the new generations of electric vehicles, for which an optimum cell design, management and configuration is essential. Modeling provides tools to perform complex analysis of the performance of Li-ion batteries and reduces the amount of time spent on experimental testing. The aim of our research is to propose a physics-based model that can predict battery behavior and aging under various conditions during the entire lifespan. A simplified electrochemical and thermal model that can predict both physicochemical and aging behaviors of Li-ion batteries has been studied. A sensitivity analysis of all its physical parameters has been performed in order to find out their influence on the model outputs based on simulations under various conditions. The results gave hints on whether a parameter needs particular attention when measured or identified and on the conditions under which it is the most sensitive. A specific simulation profile has been designed for parameters involved in aging equations in order to determine their sensitivity. Finally, a step-wise method has been followed to limit the influence of parameter values when identifying sorne of them. This sensitivity analysis and the subsequent step-wise identification method show very good results, such as a better fitting of the experimental data with simulated cell voltage. Beyond advanced comprehension and prediction, this physical model opens new possibilities to define accelerated aging tests
Juston, Maxime. "Suivi du vieillissement des batteries lithium embarquées, en usage ferroviaire". Thesis, Compiègne, 2021. http://www.theses.fr/2021COMP2596.
Pełny tekst źródłaThe classical electrical model of a cell considers it as a homogeneous whole With unique characteristics (resistance, capacitance). On the contrary, we consider that a cell can be subdivided into a certain number of volumes which are considered as homogeneous from the point of view of electrical properties. The modelling of a cell is then carried out by a set of electrical circuits, one per volume. Once this construction is completed, we seek to characterise each of the parameters of the electrical circuits by means of experimental measurements. A new method of determining the parameters for cells with a non-linear open circuit voltage is proposed, which makes possible to solve many of the difficulties encountered in our work and in previous ones. The variations of the parameters with temperature and current are also determined. A second determination, this time by optimization, allows to introduce a difference of the parameters values in order to model the heterogeneity. Experimental comparisons allow to validate the relevance of the heterogeneous model and its performances. The parameters modelling the heterogeneity are representative of the cell internals and the monitoring of these parameters during the life of the cell, and therefore its ageing, allows a diagnosis of the latter to be made. An application on a pack of two cells, one new and one artificially aged, allows a qualitative discrimination of the cells. This validates the potential of this representation as a diagnostic tool
Safari, Mohammadhosein. "Vieillissement des batteries à ions lithium : étude expérimentale et modélisation". Amiens, 2011. http://www.theses.fr/2011AMIE0106.
Pełny tekst źródłaThe focus of this dissertation is on aging and life prediction of lithium-ion batteries under different modes of operation. To this end, two different approaches are demonstrated in this thesis: the application of an empirical methodology derived from concepts used in mechanical fatigue and analysis of experimental aging data assisted by physics-based simulation. In a physics-based model, the behavior of the cell is described using a set of relevant governing equations. The cell performance can readily be simulated under different modes of operation and moreover, the explicit inclusion of aging phenomena in the set of governing equations might be used to simulate the performance fade of the cell. An originality of our work is to evaluate the prediction capability of the empirical approach using such a physics-based model of a graphite/LiCoO2 cell experiencing a single source of aging [i. E. , the growth of a solid electrolyte interphase (SEI) at the graphite electrode] as a dummy battery. We show that the empirical Palmgren-Miner rule (PM), well-known in the field of mechanical fatigue, is a valid and accurate damage-accumulation law for our case study. Additionally, we propose and validate another relationship for the loss accumulation over time. We demonstrate that the two developed methodologies can successfully predict the life of the cell under a given complex current profile with slightly better prediction ability for the case of the PM rule. The power of simulation-based analysis in aging study of Li-ion batteries is demonstrated for analyzing experimental aging data of a commercial graphite/LiFePO4 cell. Performance decay of this cell during either open-circuit-potential storage or under cycling conditions at 25 and 45°C during one year is monitored by non-destructive electrochemical techniques and is analyzed with the aid of post-mortem analyses and simulations of the cell performance over the course of aging. Data analysis reveals that the aging manifests itself more in terms of capacity loss rather than in terms of impedance increase, regardless of cycling or storage conditions and of temperature. The capacity fade is larger at 45 than at 25°C, regardless of cycling or storage conditions, and at a same temperature, cycling conditions are always more detrimental to capacity fade than storage conditions. An in-depth understanding of capacity-loss mechanism under both storage and cycling conditions is gained by refining some parameters of a mathematical model of the cell at different extents of aging. To do so, first, a simple while accurate model of the cell (without aging) is developed and validated that is able to properly account for the experimental charge/discharge (from C/10 to 1C) and path-dependence effects of the cell. In this model, the LiFePO4 electrode is treated based on a resistive-reactant concept with multiple particles whereas a single-particle approach is used to model the graphite electrode. The simulation-based analysis of the aging data reveals that the capacity fade during cell storage only results from the loss of cyclable lithium because of side reactions whereas the loss of graphite active material is an additional source of aging for the cells under cycling conditions. A simple kinetic analysis of electrode/electrolyte interactions is provided for the cells under storage conditions. Moreover, the growth of SEI at the graphite electrode under storage conditions is simulated in order to refine the solvent-reduction kinetic parameters and solvent diffusion coefficient in the SEI layer. From the analysis, it is shown that the SEI growth during storage is under mixed kinetic/diffusion control
Dudezert, Christophe. "Fatigue des batteries Li-ion dans le cadre d'une utilisation véhicule électrique : impact des conditions d'utilisation sur le vieillissement". Paris 11, 2009. http://www.theses.fr/2009PA112350.
Pełny tekst źródłaThe development of Li-ion, in recent decades has contributed to the establishment of standards in terms of mobility. The demand for miniaturization and performance then favored the develpment of secure storage systems and high autonomy, rather than sustainable. The use of these batteries, as part of an automotive appliaction, for which cycle life are defined for periods of 6 to 15 years, pushes the standards. For this application, aging has become a leading criterion in choosing a technology. From this observation arises the need to develop theorical and experimental tools able to assess and ensure a long service life of the battery. Given the diversity of uses in automotive domain, the need for rapid characterization and complexity inherent in the Li-ion systems, the aging problem of a "vehicle powertrain" has been addressed by an elctrochemical "fatigue" approach inspired from mechanical fatigue studies
Cailliez, Sylvain. "Modélisation du comportement et du vieillissement d'une batterie utilisée en propulsion automobile". Electronic Thesis or Diss., Ecole centrale de Nantes, 2023. http://www.theses.fr/2023ECDN0006.
Pełny tekst źródłaThe present context calls for an accelerated transition from internal combustion engines to zero-emission alternatives. In the short term, the battery electric vehicle is the most likely alternative, but its limited range, lifespan, flexibility and reliability are slowing down its full deployment.Optimising the energy management of the battery pack is a key factor in improving the performance of battery electric vehicles. However, the battery is a complex component evolving within an equally complex environment with multiple interactions. Modelling is therefore the most powerful tool to achieve the best possible synergy within the vehicle system.The objective of this study is to develop a general methodology combining experimental characterisation of batteries and calibration of an electrochemical model at the cell scale.The work allows to characterise and model the electrical and thermal behaviors and the aging of "pouch" batteries extracted from an battery electric vehicle, and the multiphysical interactions between these different phenomena.The model is developed within the GT-Suite environment, which will allow the integration of the cell model in a more global model representing the whole vehicle system
Chamas, Mohamad. "Électrodes négatives pour batteries Li-ion à base de FeSn2 : performances, Mécanismes et Vieillissement". Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20189.
Pełny tekst źródłaLi-ion batteries are rechargeable energy storage systems with high energy density. However, new electrode materials are needed in order to improve the electrochemical performances. This thesis is devoted to a tin based intermetallic compound as negative electrode for Li-ion batteries: FeSn2. Different synthesis methods were used in order to obtain microsized particles and nanostructured materials. The study of the electrochemical mechanisms shows that for both types of materials the first discharge is an essential restructuring step leading to the in situ formation of a Fe/Li7Sn2 nanocomposite. This transformation is due to a conversion reaction that was quantitatively characterized by Mössbauer spectroscopy from in situ and operando measurements. A new cheap and reliable electrochemical cell was developed for these measurements. Other techniques have also been used: in situ XRD and impedance spectroscopy, XPS and SQUID. By combining these tec hniques we have shown that the charge/discharge cycles were based on a reversible reaction between Li7Sn2 and tin-rich LixSn without back reaction with iron nanoparticles. This result is rather surprising because it differs from the mechanisms observed for CoSn2 and Ni3Sn4 but could explain the progressive loss of capacity usually observed with FeSn2. However, interesting performances were obtained with a capacity of 400-500mAh/g for 50 cycles and lithium rates between C/10 and 10C. Finally, we have identified aging process for the electrode at the end of discharge that causes irreversible delithiation
Mohajer, Sara. "Stratégies de charge rapide de batteries lithium-ion prenant en compte un modèle de vieillissement". Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0027.
Pełny tekst źródłaA physics-based battery model is developed for an accurate state-detection of batteries in the automotive industry. In order to use the model for the purpose of fast charging control an aging observer is designed and integrated to the battery model. In a subsequent step a robust fast charging control is introduced to design a controller able to deal with large parametric uncertainties of the battery model while achieving the fast charging target. Finally some simplifications in the battery model structure, in the optimization technique and in the definition of fast charging profiles are proposed and evaluated to make the whole model applicable for an onboard battery management system
Redondo, Iglesias Eduardo. "Étude du vieillissement des batteries lithium-ion dans les applications "véhicule électrique" : combinaison des effets de vieillissement calendaire et de cyclage". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1203/document.
Pełny tekst źródłaStudying the ageing of batteries is necessary because the degradation of their features largely determines the cost, the performances and the environmental impact of electric vehicles, particularly of full electric vehicles. The chosen method in this thesis is divided in two distinct phases, namely characterisation and modelling. The first phase is based on accelerated ageing testing of battery cells. Despite being accelerated, ageing test campaigns are expensive in terms of workforce and equipments: an a priori knowledge of ageing factors is necessary, either by the means of bibliographic studies or by performing preliminary test campaigns. These initial studies lead to an experimental design setup including a certain number of ageing tests. The obtained results may reveal the influence of use conditions on the degradation of batteries. In the second phase, the battery ageing is modelled applying the knowledge acquired in the first phase. Here, the ageing laws are generalised to predict the performance degradation of a battery subjected to variable use conditions. The resulting ageing model can be used to optimally design and use the battery in a vehicle by minimising both energy and natural resources consumption. Given that battery degradation occurs in a different way if the battery is in rest condition or if a current flows through, a major challenge is to determine how calendar and cycling ageing effects combine together. In electric vehicle applications, batteries are not used (in rest condition) most of the time and current levels are relatively low when they are used. The results from accelerated ageing tests which have been carried out during this thesis confirm the non-linearity of the combination of calendar and cycling ageing when usage profiles are applied to the batteries. The usage profiles are similar to the considered application: the electric vehicle. In the last chapter of this manuscript a simple but effective ageing model is proposed. It lies in a low number of equations (2) and parameters (6) and enables to simulate the capacity fade of a battery cell subjected to ageing conditions combining cycling and rest periods. The application examples prove the usefulness of this model for the development of battery use strategies for the purpose of extending their lifespan
Cugnet, Mikael Georges André. "Intégration du vieillissement à la gestion d'une batterie plomb automobile". Bordeaux 1, 2008. http://www.theses.fr/2008BOR13583.
Pełny tekst źródłaUgalde, Juan Miguel. "Modélisation semi-empirique du comportement électro-thermique des batteries lithium-ion et de leur vieillissement". Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASF013.
Pełny tekst źródłaThe automotive industry has been undergoing rapid changes for several years. Indeed, the global warming and its collective awareness give rhythm to these evolutions via increasingly restrictive regulations. To meet these new requirements, manufacturers are investing in low carbon emission technologies and in particular the electrification of powertrains. This necessarily involves improving energy storage systems, particularly lithium batteries, at all levels (autonomy, durability, safety and cost).To achieve these improvements, it is necessary to master the upstream design and the downstream optimal management of the batteries with the help of robust modeling. The latter is complex because the behavior of batteries is highly non-linear, it includes coupled multiphysics concepts such as electrochemistry, thermal and aging. It is therefore essential to take into account these phenomena and their interactions in order to better predict the loss of energy and accessible power throughout the service life of the vehicle. This knowledge then enables manufacturers to adequately size battery systems, thus improving benefits by reducing warranty risks. As part of this work, a semi-empirical approach is proposed to predict the ageing of high-energy lithium-ion batteries. The development of ageing laws was carried out following a campaign of accelerated ageing tests. It has been shown during this campaign that temperature is a key factor in ageing. Therefore, an electro-thermal model was designed to estimate the internal temperature of the batteries in order to be as representative as possible during usage. These two models were then coupled in a simulation environment to model and validate the loss of capacity under different operating conditions representative of the automotive use. The second part of the thesis concerns the study of internal temperature and battery ageing using characterization and diagnostic methods based on electrochemical impedance spectroscopy and measurement of entropy variation. Indeed, entropy profiles are measured during ageing to better quantify heat generation in order to improve thermal modeling. The latter has been estimated in a non-intrusive way using a transfer function developed from impedance spectra
Streszczenia konferencji na temat "Batteries – Vieillissement"
Assaud, Loïc. "Le stockage de l'énergie électrique dans les batteries à ions lithium. Une histoire d'interfaces". W MOlecules and Materials for the ENergy of TOMorrow. MSH Paris-Saclay Éditions, 2021. http://dx.doi.org/10.52983/ohqv8601.
Pełny tekst źródła