Gotowa bibliografia na temat „Batteries Metal-Ion”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Batteries Metal-Ion”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Batteries Metal-Ion"
Liu, Yi, i Rudolf Holze. "Metal-Ion Batteries". Encyclopedia 2, nr 3 (15.09.2022): 1611–23. http://dx.doi.org/10.3390/encyclopedia2030110.
Pełny tekst źródłaKiai, Maryam Sadat, Omer Eroglu i Navid Aslfattahi. "Metal-Ion Batteries: Achievements, Challenges, and Prospects". Crystals 13, nr 7 (23.06.2023): 1002. http://dx.doi.org/10.3390/cryst13071002.
Pełny tekst źródłaYang, Qingyun, Yanjin Liu, Hong Ou, Xueyi Li, Xiaoming Lin, Akif Zeb i Lei Hu. "Fe-Based metal–organic frameworks as functional materials for battery applications". Inorganic Chemistry Frontiers 9, nr 5 (2022): 827–44. http://dx.doi.org/10.1039/d1qi01396c.
Pełny tekst źródłaM Nishtha Singh, M. "An Investigation into Sodium-Metal Battery as an Alternative to Lithium-Ion Batteries". International Journal of Science and Research (IJSR) 10, nr 1 (27.01.2021): 110–15. https://doi.org/10.21275/sr21102173054.
Pełny tekst źródłaChen, Qiang. "Investigation of High-Performance Electrode Materials: Processing and Storage Mechanism". Materials 15, nr 24 (16.12.2022): 8987. http://dx.doi.org/10.3390/ma15248987.
Pełny tekst źródłaHu, Shukai. "Mxenes applications in different metal ion batteries". Applied and Computational Engineering 3, nr 1 (25.05.2023): 336–40. http://dx.doi.org/10.54254/2755-2721/3/20230537.
Pełny tekst źródłaSomo, Thabang Ronny, Tumiso Eminence Mabokela, Daniel Malesela Teffu, Tshepo Kgokane Sekgobela, Brian Ramogayana, Mpitloane Joseph Hato i Kwena Desmond Modibane. "A Comparative Review of Metal Oxide Surface Coatings on Three Families of Cathode Materials for Lithium Ion Batteries". Coatings 11, nr 7 (22.06.2021): 744. http://dx.doi.org/10.3390/coatings11070744.
Pełny tekst źródłaZhang, Xin, Yongan Yang i Zhen Zhou. "Towards practical lithium-metal anodes". Chemical Society Reviews 49, nr 10 (2020): 3040–71. http://dx.doi.org/10.1039/c9cs00838a.
Pełny tekst źródłaWu, Yuchen. "Application of Theoretical Computational Simulations in Lithium Metal Batteries". Applied and Computational Engineering 23, nr 1 (7.11.2023): 287–92. http://dx.doi.org/10.54254/2755-2721/23/20230668.
Pełny tekst źródłaLandmann, Daniel, Enea Svaluto-Ferro, Meike Heinz, Patrik Schmutz i Corsin Battaglia. "(Digital Presentation) Elucidating the Rate-Limiting Processes in High-Temperature Sodium-Metal Chloride Batteries". ECS Meeting Abstracts MA2022-02, nr 5 (9.10.2022): 578. http://dx.doi.org/10.1149/ma2022-025578mtgabs.
Pełny tekst źródłaRozprawy doktorskie na temat "Batteries Metal-Ion"
David, Lamuel Abraham. "Van der Waals sheets for rechargeable metal-ion batteries". Diss., Kansas State University, 2015. http://hdl.handle.net/2097/32796.
Pełny tekst źródłaDepartment of Mechanical and Nuclear Engineering
Gurpreet Singh
The inevitable depletion of fossil fuels and related environmental issues has led to exploration of alternative energy sources and storage technologies. Among various energy storage technologies, rechargeable metal-ion batteries (MIB) are at the forefront. One dominant factor affecting the performance of MIB is the choice of electrode material. This thesis reports synthesis of paper like electrodes composed for three representative layered materials (van der Waals sheets) namely reduced graphene oxide (rGO), molybdenum disulfide (MoS₂) and hexagonal boron nitride (BN) and their use as a flexible negative electrode for Li and Na-ion batteries. Additionally, layered or sandwiched structures of vdW sheets with precursor-derived ceramics (PDCs) were explored as high C-rate electrode materials. Electrochemical performance of rGO paper electrodes depended upon its reduction temperature, with maximum Li charge capacity of 325 mAh.g⁻¹ observed for specimen annealed at 900°C. However, a sharp decline in Na charge capacity was noted for rGO annealed above 500 °C. More importantly, annealing of GO in NH₃ at 500 °C showed negligible cyclability for Na-ions while there was improvement in electrode's Li-ion cycling performance. This is due to increased level of ordering in graphene sheets and decreased interlayer spacing with increasing annealing temperatures in Ar or reduction at moderate temperatures in NH₃. Further enhancement in rGO electrodes was achieved by interfacing exfoliated MoS₂ with rGO in 8:2 wt. ratios. Such papers showed good Na cycling ability with charge capacity of approx. 225.mAh.g⁻¹ and coulombic efficiency reaching 99%. Composite paper electrode of rGO and silicon oxycarbide SiOC (a type of PDC) was tested as high power-high energy anode material. Owing to this unique structure, the SiOC/rGO composite electrode exhibited stable Li-ion charge capacity of 543.mAh.g⁻¹ at 2400 mA.g⁻¹ with nearly 100% average cycling efficiency. Further, mechanical characterization of composite papers revealed difference in fracture mechanism between rGO and 60SiOC composite freestanding paper. This work demonstrates the first high power density silicon based PDC/rGO composite with high cyclic stability. Composite paper electrodes of exfoliated MoS₂ sheets and silicon carbonitride (another type of PDC material) were prepared by chemical interfacing of MoS₂ with polysilazane followed by pyrolysis . Microscopic and spectroscopic techniques confirmed ceramization of polymer to ceramic phase on surfaces on MoS₂. The electrode showed classical three-phase behavior characteristics of a conversion reaction. Excellent C-rate performance and Li capacity of 530 mAh.g⁻¹ which is approximately 3 times higher than bulk MoS₂ was observed. Composite papers of BN sheets with SiCN (SiCN/BN) showed improved electrical conductivity, high-temperature oxidation resistance (at 1000 °C), and high electrochemical activity (~517 mAh g⁻¹ at 100 mA g⁻¹) toward Li-ions generally not observed in SiCN or B-doped SiCN. Chemical characterization of the composite suggests increased free-carbon content in the SiCN phase, which may have exceeded the percolation limit, leading to the improved conductivity and Li-reversible capacity. The novel approach to synthesis of van der Waals sheets and its PDC composites along with battery cyclic performance testing offers a starting point to further explore the cyclic performance of other van der Waals sheets functionalized with various other PDC chemistries.
Li, Xianji. "Metal nitrides as negative electrode materials for sodium-ion batteries". Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/374787/.
Pełny tekst źródłaLemaire, Pierre. "Exploring interface mechanisms in metal-ion batteries via advanced EQCM". Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS211.
Pełny tekst źródłaResearch and technological improvements in rechargeable Li-ion batteries were driven early by the emergence of portable electronic devices and more recently by ever-increasing electric vehicle and power grid markets. Yet, advances in terms of power rate, lifetime, autonomy, cost and sustainability are still feasible. Key to these improvements is the mastering of the electrode-electrolyte interfaces (EEI) in respect of charge transfer and transport that are linked to the motion of the solvated alkali metal ions. This work aims to provide more insight into the underlying science of the EEI by exploiting electrogravimetric-based techniques derived from electrochemical quartz crystal microbalance (EQCM). To begin with, we give a comprehensive description of the fundamentals of the electrogravimetric measurements together with the developed technical setups prior to unroll our experimental strategies to get into the private life of these interfaces. Then, this thesis enlists the study of Li-ion and K-ion chemistries in both aqueous and non-aqueous electrolytes. More specifically, we demonstrate the crucial role of the desolvation step on the electrode rate capability, that we rationalized in terms of number of solvent molecules pertaining to the solvation shell at the EEI in both electrolytes, hence defeating previous beliefs based on ionic conductivity differences or else. Lastly, for the sake of completeness, the role of the water molecules in the interfacial transfer process and their influence on the overall kinetics in a proton-based battery is explored
Nose, Masafumi. "Studies on Sodium-containing Transition Metal Phosphates for Sodium-ion Batteries". 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215565.
Pełny tekst źródłaLubke, Mechthild. "Nano-sized transition metal oxide negative electrode materials for lithium-ion batteries". Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10044227/.
Pełny tekst źródłaBudak, Öznil [Verfasser]. "Metal oxide / carbon hybrid anode materials for lithium-ion batteries / Öznil Budak". Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1232726214/34.
Pełny tekst źródłaAlwast, Dorothea [Verfasser]. "Electrochemical Model Studies on Metal-air and Lithium-ion Batteries / Dorothea Alwast". Ulm : Universität Ulm, 2021. http://d-nb.info/1237750822/34.
Pełny tekst źródłaWang, Luyuan Paul. "Matériaux à hautes performance à base d'oxydes métalliques pour applications de stockage de l'énergie". Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI031/document.
Pełny tekst źródłaThe heart of battery technology lies primarily in the electrode material, which is fundamental to how much charge can be stored and how long the battery can be cycled. Tin dioxide (SnO₂) has received tremendous attention as an anode material in both Li-ion (LIB) and Na-ion (NIB) batteries, owing to benefits such as high specific capacity and rate capability. However, large volume expansion accompanying charging/discharging process results in poor cycleability that hinders the utilization of SnO₂ in commercial batteries. To this end, engineering solutions to surmount the limitations facing SnO₂ as an anode in LIB/NIB will be presented in this thesis. The initial part of the thesis focuses on producing SnO₂ and rGO (reduced graphene oxide)/SnO₂ through laser pyrolysis and its application as an anode. The following segment studies the effect of nitrogen doping, where it was found to have a positive effect on SnO₂ in LIB, but a detrimental effect in NIB. The final part of the thesis investigates the effect of matrix engineering through the production of a ZnSnO₃ compound. Finally, the obtained results will be compared and to understand the implications that they may possess
Henriques, Alexandra J. "Nano-Confined Metal Oxide in Carbon Nanotube Composite Electrodes for Lithium Ion Batteries". FIU Digital Commons, 2017. http://digitalcommons.fiu.edu/etd/3169.
Pełny tekst źródłaTsukamoto, Hisashi. "Synthesis and electrochemical studies of lithium transition metal oxides for lithium-ion batteries". Thesis, University of Aberdeen, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327428.
Pełny tekst źródłaKsiążki na temat "Batteries Metal-Ion"
Zhang, Shanqing. Functional Polymers for Metal-Ion Batteries. Wiley & Sons, Incorporated, John, 2023.
Znajdź pełny tekst źródłaZhang, Shanqing. Functional Polymers for Metal-Ion Batteries. Wiley & Sons, Incorporated, John, 2023.
Znajdź pełny tekst źródłaZhang, Shanqing. Functional Polymers for Metal-Ion Batteries. Wiley & Sons, Limited, John, 2022.
Znajdź pełny tekst źródłaZhang, Shanqing. Functional Polymers for Metal-Ion Batteries. Wiley & Sons, Incorporated, John, 2023.
Znajdź pełny tekst źródłaAdvanced Metal Ion Storage Technologies: Beyond Lithium- Ion Batteries. CRC Press LLC, 2023.
Znajdź pełny tekst źródłaInnovative Antriebe 2016. VDI Verlag, 2016. http://dx.doi.org/10.51202/9783181022894.
Pełny tekst źródłaCzęści książek na temat "Batteries Metal-Ion"
Tang, Wei. "Metal Ion to Metal Batteries". W Advanced Metal Ion Storage Technologies, 193–251. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003208198-8.
Pełny tekst źródłaRajagopalan, Ranjusha, Haiyan Wang i Yougen Tang. "Zinc-Ion Batteries". W Advanced Metal Ion Storage Technologies, 91–100. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003208198-4.
Pełny tekst źródłaLiu, Yumei, i Weibo Hua. "Sodium-Ion Batteries". W Advanced Metal Ion Storage Technologies, 25–59. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003208198-2.
Pełny tekst źródłaPhanendra, Peddinti V. R. L., V. Anoopkumar, Sumol V. Gopinadh, Bibin John i T. D. Mercy. "Potassium-Ion Batteries". W Advanced Metal Ion Storage Technologies, 60–90. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003208198-3.
Pełny tekst źródłaLi, Hongsen, Huaizhi Wang, Hao Zhang, Zhengqiang Hu i Yongshuai Liu. "Aluminum-Ion Batteries". W Advanced Metal Ion Storage Technologies, 138–72. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003208198-6.
Pełny tekst źródłaAlcántara, Ricardo, Marta Cabello, Pedro Lavela i José L. Tirado. "Calcium-Ion Batteries". W Advanced Metal Ion Storage Technologies, 173–92. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003208198-7.
Pełny tekst źródłaYuan, Yuan, Dachong Gu, Xingwang Zheng, Ligang Zhang, Liang Wu, Jingfeng Wang, Dajian Li i Fusheng Pan. "Magnesium Ion Batteries". W Advanced Metal Ion Storage Technologies, 101–37. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003208198-5.
Pełny tekst źródłaLi, Mingtao, i Xiaolu Tian. "Introduction to Metal Ion Batteries". W Advanced Metal Ion Storage Technologies, 1–24. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003208198-1.
Pełny tekst źródłaNithya, C. "Biowastes for Metal-Ion Batteries". W Energy from Waste, 269–82. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003178354-22.
Pełny tekst źródłaPatel, Anupam, i Rajendra Kumar Singh. "Graphene-Based Metal-Ion Batteries". W NanoCarbon: A Wonder Material for Energy Applications, 91–107. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9931-6_5.
Pełny tekst źródłaStreszczenia konferencji na temat "Batteries Metal-Ion"
Liang, Junfei, Lidong Li i Lin Guo. "Graphene/metal oxide nanocomposites for Li-ion batteries". W Advanced Optoelectronics for Energy and Environment. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/aoee.2013.asu3b.1.
Pełny tekst źródłaRanganath, Suman Bhasker, Steven Hartman, Ayorinde S. Hassan, Collin D. Wick i B. Ramu Ramachandran. "Interfaces in Metal, Alloy, and Metal Oxide Anode Materials for Lithium Ion Batteries". W Annual International Conference on Materials science, Metal and Manufacturing ( M3 2016 ). Global Science & Technology Forum ( GSTF ), 2016. http://dx.doi.org/10.5176/2251-1857_m316.28.
Pełny tekst źródłaDoeff, Marca M., Thomas Conry i James Wilcox. "Improved layered mixed transition metal oxides for Li-ion batteries". W SPIE Defense, Security, and Sensing, redaktorzy Nibir K. Dhar, Priyalal S. Wijewarnasuriya i Achyut K. Dutta. SPIE, 2010. http://dx.doi.org/10.1117/12.851228.
Pełny tekst źródłaLou, Xiong Wen (David). "Metal Oxide based Nanostructured Anode Materials for Li-ion Batteries". W 14th Asia Pacific Confederation of Chemical Engineering Congress. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-1445-1_543.
Pełny tekst źródłaShao, Chenhui, Tae Hyung Kim, S. Jack Hu, Jionghua (Judy) Jin, Jeffrey A. Abell i J. Patrick Spicer. "Tool Wear Monitoring for Ultrasonic Metal Welding of Lithium-Ion Batteries". W ASME 2015 International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/msec2015-9428.
Pełny tekst źródłaParekh, Mihir, i Christopher D. Rahn. "Normal Electrolyte Flow Helps in Controlling Dendrite Growth in Zinc Metal Batteries". W ASME 2022 Power Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/power2022-85501.
Pełny tekst źródłaOpra, Denis P., Sergey V. Gnedenkov, Alexander A. Sokolov, Alexander N. Minaev, Valery G. Kuryavyi i Sergey L. Sinebryukhov. "Facile synthesis of nanostructured transition metal oxides as electrodes for Li-ion batteries". W ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING: FROM THEORY TO APPLICATIONS: Proceedings of the International Conference on Electrical and Electronic Engineering (IC3E 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.4998108.
Pełny tekst źródłaSmith, Taylor, Jinyun Liao, Khaleel Hamad i Yangchuan Xing. "Transition Metal Oxide Powders Made from Flame Spray Pyrolysis for Li-Ion Batteries". W 232nd ECS Meeting, National Harbor, MD, Oct. 1-5, 2017. US DOE, 2022. http://dx.doi.org/10.2172/1871961.
Pełny tekst źródłaZhao, Ting-Wen, Zi-Geng Liu, Kang-Li Fu, Yang Li i Ming Cai. "The Application of Metal-Organic Frameworks as Anode Materials for Li-Ion Batteries". W 4th 2016 International Conference on Material Science and Engineering (ICMSE 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icmse-16.2016.87.
Pełny tekst źródłaLee, Sangyup, Eunji Kim, Paul Maldonado Nogales i Soon Ki Jeong. "Spectroscopic Analysis of Electrolyte Solutions with Diverse Metal Ions for Aqueous Zinc-Ion Batteries". W International Conference on Advanced Materials, Mechanics and Structural Engineering. Switzerland: Trans Tech Publications Ltd, 2024. http://dx.doi.org/10.4028/p-wksz7w.
Pełny tekst źródłaRaporty organizacyjne na temat "Batteries Metal-Ion"
Gao, Yue, Guoxing Li, Pei Shi i Linh Le. Multifunctional Li-ion Conducting Interfacial Materials for Lithium Metal Batteries”. Office of Scientific and Technical Information (OSTI), grudzień 2021. http://dx.doi.org/10.2172/1839857.
Pełny tekst źródłaDzwiniel, Trevor L., Krzysztof Z. Pupek i Gregory K. Krumdick. Scale-up of Metal Hexacyanoferrate Cathode Material for Sodium Ion Batteries. Office of Scientific and Technical Information (OSTI), październik 2016. http://dx.doi.org/10.2172/1329386.
Pełny tekst źródłaSisk, Brian, Peter Frischmann i Jessica Golden. Transition Metal Blocking Microporous Polymer Separators for Energy-Dense and Long-Lived Li-ion Batteries. Office of Scientific and Technical Information (OSTI), styczeń 2024. http://dx.doi.org/10.2172/2282157.
Pełny tekst źródłaYakovleva, Marina. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES. Office of Scientific and Technical Information (OSTI), grudzień 2012. http://dx.doi.org/10.2172/1164223.
Pełny tekst źródła