Artykuły w czasopismach na temat „Batteries à flux”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Batteries à flux”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Chen, Ming Yi, Richard Yuen i Jian Wang. "Experimental Study on the Bundle Lithium-Ion Batteries Fire". Materials Science Forum 890 (marzec 2017): 263–66. http://dx.doi.org/10.4028/www.scientific.net/msf.890.263.
Pełny tekst źródłaAhmedov, B. J. "On a Possibility to Measure Thermo-Electric Power in SNS Structures". Modern Physics Letters B 12, nr 16 (10.07.1998): 633–37. http://dx.doi.org/10.1142/s0217984998000743.
Pełny tekst źródłaLi, Zhen Zhe, Yun De Shen, Gui Ying Shen, Mei Qin Li i Ming Ren. "Parameter Study on Cooling System of Battery for HEV". Advanced Materials Research 538-541 (czerwiec 2012): 2038–42. http://dx.doi.org/10.4028/www.scientific.net/amr.538-541.2038.
Pełny tekst źródłaLiu, Yue, Bin Li, Jianhua Liu, Songmei Li i Shubin Yang. "Pre-planted nucleation seeds for rechargeable metallic lithium anodes". Journal of Materials Chemistry A 5, nr 35 (2017): 18862–69. http://dx.doi.org/10.1039/c7ta04932c.
Pełny tekst źródłaWu, Zhiheng, Yongshang Zhang, Lu Li, Yige Zhao, Yonglong Shen, Shaobin Wang i Guosheng Shao. "Nitrogen-doped vertical graphene nanosheets by high-flux plasma enhanced chemical vapor deposition as efficient oxygen reduction catalysts for Zn–air batteries". Journal of Materials Chemistry A 8, nr 44 (2020): 23248–56. http://dx.doi.org/10.1039/d0ta07633c.
Pełny tekst źródłaZeising, Samuel, Rebecca Seidl, Angelika Thalmayer, Georg Fischer i Jens Kirchner. "Low-Frequency Magnetic Localization of Capsule Endoscopes with an Integrated Coil". Engineering Proceedings 6, nr 1 (17.05.2021): 38. http://dx.doi.org/10.3390/i3s2021dresden-10146.
Pełny tekst źródłaKhasanshin, R. H., i D. V. Ouvarov. "Determination of threshold values of parameters of electronic irradiation of glass leading to electrostatic discharges". Izvestiâ Akademii nauk SSSR. Seriâ fizičeskaâ 88, nr 4 (26.11.2024): 538–48. http://dx.doi.org/10.31857/s0367676524040032.
Pełny tekst źródłaBenavides, Darío, Paúl Arévalo, Luis G. Gonzalez i José A. Aguado. "Analysis of Different Energy Storage Technologies for Microgrids Energy Management". E3S Web of Conferences 173 (2020): 03004. http://dx.doi.org/10.1051/e3sconf/202017303004.
Pełny tekst źródłaTeshima, Katsuya, Hajime Wagata i Shuji Oishi. "All-Crystal-State Lithium-Ion Batteries: Innovation Inspired by Novel Flux Coating Method." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2013, CICMT (1.09.2013): 000187–91. http://dx.doi.org/10.4071/cicmt-wp41.
Pełny tekst źródłaTan, Chun, Matthew D. R. Kok, Sohrab R. Daemi, Daniel J. L. Brett i Paul R. Shearing. "Three-dimensional image based modelling of transport parameters in lithium–sulfur batteries". Physical Chemistry Chemical Physics 21, nr 8 (2019): 4145–54. http://dx.doi.org/10.1039/c8cp04763d.
Pełny tekst źródłaWu, Lisha, Ying Zhang, Ping Shang, Yanfeng Dong i Zhong-Shuai Wu. "Redistributing Zn ion flux by bifunctional graphitic carbon nitride nanosheets for dendrite-free zinc metal anodes". Journal of Materials Chemistry A 9, nr 48 (2021): 27408–14. http://dx.doi.org/10.1039/d1ta08697a.
Pełny tekst źródłaLiu, Borui, Juan F. Torres, Mahdiar Taheri, Pan Xiong, Teng Lu, Junwu Zhu, Yun Liu, Guihua Yu i Antonio Tricoli. "Dual‐Ion Flux Management for Stable High Areal Capacity Lithium–Sulfur Batteries". Advanced Energy Materials 12, nr 10 (27.01.2022): 2103444. http://dx.doi.org/10.1002/aenm.202103444.
Pełny tekst źródłaNateghi, A., i M. A. Keip. "A thermo-chemo-mechanically coupled model for cathode particles in lithium–ion batteries". Acta Mechanica 232, nr 8 (26.05.2021): 3041–65. http://dx.doi.org/10.1007/s00707-021-02970-1.
Pełny tekst źródłaCho, Jinil, Yong-keon Ahn, Yong Jun Gong, Seonmi Pyo, Jeeyoung Yoo i Youn Sang Kim. "An organic–inorganic composite separator for preventing shuttle effect in lithium–sulfur batteries". Sustainable Energy & Fuels 4, nr 6 (2020): 3051–57. http://dx.doi.org/10.1039/d0se00123f.
Pełny tekst źródłaYubuta, Kunio, Yusuke Mizuno, Nobuyuki Zettsu, Shigeki Komine, Kenichiro Kami, Hajime Wagata, Shuji Oishi i Katsuya Teshima. "TEM observation for low-temperature grown spinel-type LiMn2O4crystals". Acta Crystallographica Section A Foundations and Advances 70, a1 (5.08.2014): C749. http://dx.doi.org/10.1107/s205327331409250x.
Pełny tekst źródłaSharma, Bhamiti, Bing Tan, David Shepard, David Li, Yuhao Liao i Yang-Tse Cheng. "Multifunctional Zeolite Coated Separators for Improved Performance and Safety of Lithium Metal Batteries". ECS Meeting Abstracts MA2023-01, nr 2 (28.08.2023): 549. http://dx.doi.org/10.1149/ma2023-012549mtgabs.
Pełny tekst źródłaKim, Patrick J., Kyungho Kim i Vilas G. Pol. "Uniform metal-ion flux through interface-modified membrane for highly stable metal batteries". Electrochimica Acta 283 (wrzesień 2018): 517–27. http://dx.doi.org/10.1016/j.electacta.2018.06.177.
Pełny tekst źródłaZHAO, LIWEI, JIANGFENG NI, HAIBO WANG i LIJUN GAO. "FLUX SYNTHESIS OF Na0.44MnO2 NANORIBBONS AND THEIR ELECTROCHEMICAL PROPERTIES FOR Na-ION BATTERIES". Functional Materials Letters 06, nr 02 (kwiecień 2013): 1350012. http://dx.doi.org/10.1142/s1793604713500124.
Pełny tekst źródłaTang, Weiping. "Preparation of Lithium Cobalt Oxide by LiCl-Flux Method for Lithium Rechargeable Batteries". Electrochemical and Solid-State Letters 1, nr 3 (1999): 145. http://dx.doi.org/10.1149/1.1390665.
Pełny tekst źródłaPark, Kyu-Young, Hyungsub Kim, Seongsu Lee, Jongsoon Kim, Jihyun Hong, Hee-Dae Lim, Inchul Park i Kisuk Kang. "Thermal structural stability of a multi-component olivine electrode for lithium ion batteries". CrystEngComm 18, nr 39 (2016): 7463–70. http://dx.doi.org/10.1039/c6ce00944a.
Pełny tekst źródłaChi, Ri-Guang, i Seok-Ho Rhi. "Oscillating Heat Pipe Cooling System of Electric Vehicle’s Li-Ion Batteries with Direct Contact Bottom Cooling Mode". Energies 12, nr 9 (5.05.2019): 1698. http://dx.doi.org/10.3390/en12091698.
Pełny tekst źródłaZhu, Jie, Junchao Zheng, Guolin Cao, Yunjiao Li, Yuan Zhou, Shiyi Deng i Chunxi Hai. "Flux-free synthesis of single-crystal LiNi0.8Co0.1Mn0.1O2 boosts its electrochemical performance in lithium batteries". Journal of Power Sources 464 (lipiec 2020): 228207. http://dx.doi.org/10.1016/j.jpowsour.2020.228207.
Pełny tekst źródłaTakeuchi, Esther S., Amy C. Marschilok i Kenneth J. Takeuchi. "(Invited) Transport Limits for Zinc Aqueous Electrolyte Batteries: Investigation over Multiple Length Scales". ECS Meeting Abstracts MA2024-01, nr 3 (9.08.2024): 558. http://dx.doi.org/10.1149/ma2024-013558mtgabs.
Pełny tekst źródłaM., Vishnu, Anooplal B. i Rajesh Baby. "Experimental exploration of nano-phase change material composites for thermal management in Lithium-ion batteries". Energy Storage and Conversion 2, nr 2 (24.05.2024): 309. http://dx.doi.org/10.59400/esc.v2i2.309.
Pełny tekst źródłaGuillamon, Joaquin I., i Amit Verma. "Electrolyte-Centric Thermal Model of Li-Ion Battery Under Abuse Conditions". ECS Meeting Abstracts MA2022-02, nr 5 (9.10.2022): 556. http://dx.doi.org/10.1149/ma2022-025556mtgabs.
Pełny tekst źródłaYurukcu, M., H. Cansizoglu, M. F. Cansizoglu i T. Karabacak. "Conformality of PVD shell layers on vertical arrays of rods with different aspect ratios investigated by Monte Carlo simulations". MRS Advances 2, nr 8 (2017): 465–70. http://dx.doi.org/10.1557/adv.2017.158.
Pełny tekst źródłaJaya Shankar, R., J. Lakshmipathi, N. Raghukiran, P. Manickavasagam, YS Govardhan i G. Sakthivel. "Design and Optimization of Axial Flux Permanent Magnet Alternator for Onboard Power Generation in Two-Wheeler Applications". Journal of Physics: Conference Series 2601, nr 1 (1.09.2023): 012041. http://dx.doi.org/10.1088/1742-6596/2601/1/012041.
Pełny tekst źródłaSteganov, G. B., A. M. Beznyakov i A. V. Nemirov. "Influence of space vehicle remote power supply on thermal regimes of solar batteries". VESTNIK of Samara University. Aerospace and Mechanical Engineering 21, nr 1 (27.04.2022): 14–23. http://dx.doi.org/10.18287/2541-7533-2022-21-1-14-23.
Pełny tekst źródłaWhite, Gavin, Alastair Hales, Gregory James Offer i Yatish Patel. "(Invited) Methods for the Parameterisation of Battery Thermal Models". ECS Meeting Abstracts MA2023-02, nr 7 (22.12.2023): 974. http://dx.doi.org/10.1149/ma2023-027974mtgabs.
Pełny tekst źródłaLiu, Ying, Fang Fu, Chen Sun, Aotian Zhang, Hong Teng, Liqun Sun i Haiming Xie. "Enabling Stable Interphases via In Situ Two-Step Synthetic Bilayer Polymer Electrolyte for Solid-State Lithium Metal Batteries". Inorganics 10, nr 4 (29.03.2022): 42. http://dx.doi.org/10.3390/inorganics10040042.
Pełny tekst źródłaSheryazov, Saken Koishibaevich, Olga Anatolievna Guseva, Aleksey Sergeevich Chigak i Arsen Khalitovich Doskenov. "Improving the methodology for determining the main parameters of solar batteries". Agrarian Scientific Journal, nr 6 (26.06.2023): 156–62. http://dx.doi.org/10.28983/asj.y2023i6pp156-162.
Pełny tekst źródłaFung, Kuan-Zong, Shu-Yi Tsai i I.-Chun Liu. "Conduction/Densification Enhancement of Na1+X Zr2Si x P3-X O12 Nasicon Solid Electrolyte for Solid-State Na Batteries". ECS Meeting Abstracts MA2023-02, nr 4 (22.12.2023): 767. http://dx.doi.org/10.1149/ma2023-024767mtgabs.
Pełny tekst źródłaMiao, Xianguang, Huiyang Wang, Rui Sun, Xiaoli Ge, Danyang Zhao, Peng Wang, Rutao Wang i Longwei Yin. "Isotropous Sulfurized Polyacrylonitrile Interlayer with Homogeneous Na + Flux Dynamics for Solid‐State Na Metal Batteries". Advanced Energy Materials 11, nr 13 (25.02.2021): 2003469. http://dx.doi.org/10.1002/aenm.202003469.
Pełny tekst źródłaJacob, Jorne. "The Chalkboard: C Rating of Batteries: A Misleading Concept, C Flux Rather than C Rate". Electrochemical Society Interface 27, nr 2 (2018): 42–43. http://dx.doi.org/10.1149/2.f01182if.
Pełny tekst źródłaTANG, W., H. KANOH i K. OOI. "ChemInform Abstract: Preparation of Lithium Cobalt Oxide by LiCl-Flux Method for Lithium Rechargeable Batteries." ChemInform 29, nr 43 (19.06.2010): no. http://dx.doi.org/10.1002/chin.199843012.
Pełny tekst źródłaBoragno, Corrado, Orazio Aiello i Daniele D. Caviglia. "Monitoring the Air Quality in an HVAC System via an Energy Harvesting Device". Sensors 23, nr 14 (13.07.2023): 6381. http://dx.doi.org/10.3390/s23146381.
Pełny tekst źródłaJu, Zhengyu, Tianrui Zheng, Bowen Zhang i Guihua Yu. "Interfacial chemistry in multivalent aqueous batteries: fundamentals, challenges, and advances". Chemical Society Reviews, 2024. http://dx.doi.org/10.1039/d4cs00474d.
Pełny tekst źródłaLuo, Zhixuan, Yiming Zhao, Yu Huyan, Lingbo Ren, Mingyao Wang, Xu Li i Jian‐Gan Wang. "Designing Multi‐functional Separators With Regulated Ion Flux and Selectivity for Macrobian Zinc Ion Batteries". Small, 9.12.2024. https://doi.org/10.1002/smll.202410342.
Pełny tekst źródłaVillarroel-Sepúlveda, Nicolás, F. A. Asenjo i P. S. Moya. "Magnetic seed generation by plasma heat flux in accretion disks". Astronomy & Astrophysics, 3.12.2024. https://doi.org/10.1051/0004-6361/202452803.
Pełny tekst źródłaYang, Yi, Sa Wang, Yuqing Duan, Ting Wang, Fengdong Wang, Haitao Zhu, Zhifang Wang, Kai Zhang, Peng Cheng i Zhenjie Zhang. "Flux Synthesis of Robust Polyimide Covalent Organic Frameworks with High‐Density Redox Sites for Efficient Proton Batteries". Angewandte Chemie International Edition, 25.11.2024. http://dx.doi.org/10.1002/anie.202418394.
Pełny tekst źródłaYang, Yi, Sa Wang, Yuqing Duan, Ting Wang, Fengdong Wang, Haitao Zhu, Zhifang Wang, Kai Zhang, Peng Cheng i Zhenjie Zhang. "Flux Synthesis of Robust Polyimide Covalent Organic Frameworks with High‐Density Redox Sites for Efficient Proton Batteries". Angewandte Chemie, 25.11.2024. http://dx.doi.org/10.1002/ange.202418394.
Pełny tekst źródłaZhang, Shuoqing, Ruhong Li, Nan Hu, Tao Deng, Suting Weng, Zunchun Wu, Di Lu i in. "Tackling realistic Li+ flux for high-energy lithium metal batteries". Nature Communications 13, nr 1 (16.09.2022). http://dx.doi.org/10.1038/s41467-022-33151-w.
Pełny tekst źródłaJia, Hao, Chao Zeng, Hyung‐Seok Lim, Ashley Simmons, Yuepeng Zhang, Marc H. Weber, Mark H. Engelhard i in. "Important Role of Ion Flux Regulated by Separators in Lithium Metal Batteries". Advanced Materials, 25.12.2023. http://dx.doi.org/10.1002/adma.202311312.
Pełny tekst źródłaWang, jinguo, fan-gong Kong, zi-rui wang, Manman Ren, cong-de Qiao, Wei-Liang LIU, jinshui Yao, chang-bin Zhang i hui Zhao. "Dendrite-Free Zinc Deposition Induced by an Artificial Layer of Strontium Titanate for Stable Zinc Metal Anode". Journal of The Electrochemical Society, 12.06.2023. http://dx.doi.org/10.1149/1945-7111/acdd9e.
Pełny tekst źródłaWang, Haobo, Yutong Wu, Qihong Xie, Xinxi Ma, Jiawei Zou, Anyu Zheng, Taolian Guo, Chao Wang i Jie Han. "An Ionic Sieve‐Integrated Conductive Interfacial Design to Simultaneously Regulate the Zn2+ Flux and Interfacial Resistance for Advancing Zinc‐Ion Batteries". Advanced Functional Materials, 24.11.2024. http://dx.doi.org/10.1002/adfm.202417145.
Pełny tekst źródłaLi, Rong, Jiaqi Li, Xin Wang, Caifeng Jian, Xinxiang Wu, Benhe Zhong i Yanxiao Chen. "Surface Design for High Ion Flux Separator in Lithium-Sulfur Batteries". Journal of Colloid and Interface Science, październik 2023. http://dx.doi.org/10.1016/j.jcis.2023.10.018.
Pełny tekst źródłaNayak, Bhojkumar, Ritwik Mondal i Musthafa Ottakam Thotiyl. "Electrostatically Driven Unidirectional Molecular Flux for High Performance Alkaline Flow Batteries". Nanoscale, 2023. http://dx.doi.org/10.1039/d3nr02727a.
Pełny tekst źródłaCai, Da‐Qian, Shi‐Xi Zhao, Huan Liu, Shuyu Zhou, Tong Gao, Ruihua Rao, Jianwei Zhao, Yirui Deng, Jin‐Lin Yang i Ruiping Liu. "Ordered and Expanded Li Ion Channels for Dendrite‐Free and Fast Kinetics Lithium–Sulfur Battery". Advanced Functional Materials, 24.11.2024. http://dx.doi.org/10.1002/adfm.202419165.
Pełny tekst źródłaYing, Hangjun, Pengfei Huang, Zhao Zhang, Shunlong Zhang, Qizhen Han, Zhihao Zhang, Jianli Wang i Wei-Qiang Han. "Freestanding and Flexible Interfacial Layer Enables Bottom-Up Zn Deposition Toward Dendrite-Free Aqueous Zn-Ion Batteries". Nano-Micro Letters 14, nr 1 (1.09.2022). http://dx.doi.org/10.1007/s40820-022-00921-6.
Pełny tekst źródłaHu, Qiang, Jisong Hu, Fei Ma, Yunbo Liu, Lincai Xu, Lei Li, Xingquan Liu, Jingxin Zhao i Huan Pang. "Redistributing Zinc‐ion Flux by Work Function Chemistry toward Stabilized and Durable Zn Metal Batteries". Energy & Environmental Science, 2024. http://dx.doi.org/10.1039/d3ee04304e.
Pełny tekst źródła