Gotowa bibliografia na temat „Batterie solide lithium-Métal”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Batterie solide lithium-Métal”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Rozprawy doktorskie na temat "Batterie solide lithium-Métal"

1

Hajndl, Ognjen. "Batterie tout solide pour application automobile : processus de mise en forme et étude des interfaces". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI026/document.

Pełny tekst źródła
Streszczenie:
Les attentes pour les prochaines générations de batteries pour le véhicule électrique sont grandes, que ce soit en termes d’autonomie, d’impact environnemental, de vitesse de charge et de coût. Les systèmes dits tout solide comprenant un électrolyte, non plus liquide, mais solide et non-inflammable pourrait répondre à ces attentes.La céramique de type grenat Li7La3Zr2O12 (LLZO) est un électrolyte solide prometteur au vue de sa bonne conductivité, stabilité chimique et électrochimique. La contrainte majeure réside dans le besoin de densifier la céramique à haute température afin de la rendre conductrice. Aucune méthode standard d’assemblage/mise en forme n’existe pour obtenir une cellule tout solide dense avec des interfaces peu résistives.Dans cette optique, les travaux de thèse ont permis d’optimiser le protocole de synthèse par voie « tout solide » de l’oxyde LLZO et sa mise en forme grâce à la technique de compression uniaxiale à chaud (CUC). Les conditions d’assemblage de cellules symétriques Li/LLZO/Li ont permis d’étudier l’interface Li-métal/LLZO et son impact sur la dissolution/redéposition du lithium. La faisabilité de densifier une « demi-cellule » (cathode composite/LLZO) en une seule étape a également été étudiée en ajustant les paramètres de température et pression du protocole de CUC
Next generation batteries expectations for electric vehicle are significant, whether in terms of autonomy, environmental impact, charging speed and cost. The all solid-state batteries with a non-flammable solid electrolyte, rather than the conventional liquid one, could meet those criteria.Garnet-type ceramic Li7La3Zr2O12 (LLZO) is a promising solid electrolyte given its good Li-ion conductivity, chemical and electrochemical stability. The major constraint is the need to densify the ceramic at high temperature in order to make it conductive. No standard method exists to build a dense all-solid cell with low interfacial resistance.In this context, the PhD work managed to optimize the solid-state synthesis protocol of the LLZO oxide and his densification by the hot-pressing technique. The conditions of symmetrical Li/LLZO/Li cell assembly allowed to study the Li-metal/LLZO interface and its impact on lithium plating/striping behavior. Feasibility of densifying a “half-cell” (composite cathode/LLZO) in one single step was also studied by adjusting the hot-pressing temperature and pressure parameters
Style APA, Harvard, Vancouver, ISO itp.
2

Basso-Bert, Thomas. "Etude de l'élaboration et des performances électrochimiques de séparateurs électrolytiques composites polymère-céramique pour des batteries au Lithium métal". Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALI036.

Pełny tekst źródła
Streszczenie:
Pour augmenter la densité d’énergie dans les générateurs électrochimiques, deux leviers sont habituellement étudiés : la capacité et le potentiel des matériaux d’électrodes. L’utilisation de lithium (Li) métal comme matériau d’électrode négative répond à ces enjeux puisqu’il présente une très grande capacité gravimétrique (3860 mAh/g) et un potentiel très bas (-3.04 V vs. SHE). Malheureusement, de nombreux phénomènes sont délétères au bon fonctionnement de cette négative idéale, comme la croissance de lithium dendritique au cours du cyclage qui entraine des fins de vie prématurées et des problèmes de sécurité. Une solution est de travailler avec des électrolytes solides, en lieu et place des électrolytes liquides organiques actuels des batteries Li-ion. Ainsi, la recherche se concentre sur le développement de nombreux matériaux d’électrolytes solides, bons conducteurs ionique, stables à bas et haut potentiels, peu coûteux, recyclables, etc. Malgré de grandes avancées que ce soit dans le domaine des électrolytes céramiques ou polymères (voire même des composites des deux), aucun matériau ne semble s’imposer pour l’heure [1].Dans ce contexte, un nouveau concept de membrane hybride polymère/céramique est étudié pour son intégration en batterie au Li métal [2][3]. Nous avons réalisé, par un procédé en voie fondu économique, sans solvant, et aisément extrapolable à l’échelle industrielle, un séparateur constitué d’une monocouche de grains d’électrolyte céramique Li1,3Al0,3Ti1,7(PO4)3 (LATP) jointoyée par un polymère (figure 1.a.). Les grains de LATP percolant de part et d’autre de la membrane apportent la conductivité aux ions Li+ tandis que le polymère à base de Poly(éthylène) assure la tenue mécanique, l’étanchéité aux solvants et sels de lithium, et l’isolation électrique. Le concept de ces membranes est de pouvoir optimiser l’anolyte et le catholyte indépendamment. La conductivité de telles membranes a été étudiée en fonction du pourcentage volumique de LATP (figure 1.b.) et atteint 0,491 mS/cm, à température ambiante, pour une membrane à 50%vol. De plus, le transfert de charge ionique à travers une cellule anolyte / membrane / catholyte a été étudiée par impédance électrochimique. La croissance dendritique en cellule symétrique Li / anolyte / membrane / anolyte / Li a aussi été étudié. Finalement, une batterie à haute densité d’énergie a été réalisée et cyclée à température ambiante.Références :[1] Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 1–4 (2016)[2] Aetukuri, N. B. et al. Flexible Ion-Conducting Composite Membranes for Lithium Batteries. Adv. Energy Mater. 5, 1–6 (2015)[3] Samuthira Pandian, A. et al. Flexible, Synergistic Ceramic-Polymer Hybrid Solid-State Electrolyte for Secondary Lithium Metal Batteries. ACS Appl. Energy Mater. 3, 12709–12715 (2020)
To boost the energy density of lithium-based accumulators, two levers are commonly studied: the energy density and the potential of electrode materials. The use of Li metal as a negative electrode is undoubtedly an appropriate solution to address these challenges since it has the highest gravimetric capacity (3860mAh/g) and very low reducing potential (-3.04 V vs. Standard Hydrogen Electrode). However, a couple of harmful phenomena prevent from using this ideal negative electrode, such as the dendritic growth during the electrodeposition of Lithium metal when a conventional organic liquid electrolyte is used. As a result, the research has been focusing on the development of numerous solid-state electrolytes (SSE) materials, having high Li+ ionic conductivity, high Li+ transport number, large electrochemical stability window, low cost, recyclable. Despite of breakthroughs for both ceramics or polymers fields (and even composites of both), no room temperature SSE has been developed at industrial scale so far [1].In that context, a new concept [2] of composite polymer/ceramic membrane is studied to be implemented within a Lithium Metal battery. It consists of an electrolytic separator where the Li1.3Al0,3Ti1,7(PO4)3 (LATP) ceramic forms one mono layer of monocrystalline and monodispersed grains bonded with a Poly(ethylene)-based matrix. The LATP grains are the Li+ conducting media allowing the Li+ percolation from one side to another while the Poly(ethylene)-based matrix which is ionically and electronically insulating, and, above all, impermeable to most of conventional Li-ion batteries solvents and Li salts, ensuring both the membrane tightening and very good flexibility (figure 1.a.). Herein, this composite membrane is elaborated via a low cost, solvent free process thanks to extrusion and calendering which can be industrially upscaled unlike the very complex and multistep processes suggested in the literature so far [2,3]. The microstructure of the composite separators was characterized by SEM and X-ray Tomography imaging to better understand the influences of the ceramic, the polymer type, and the elaboration process parameters. The Li+ ionic conductivity of the composite membranes as a function of the ceramic content have been studied by electrochemical impedance spectroscopy (EIS) and a high conductivity of 0.49 mS/cm has been measured at 25°C (50vol% LATP, figure 1.b.). Acting as a chemical barrier, this composite membrane allows the optimization of electrolyte chemistries at both the anode side and the cathode sides. Hence, the ionic charge transfer mechanisms in symmetric electrolyte/membrane/electrolyte systems have been also studied by EIS to determine the driving parameters such as the solvent type, the Li salt type and concentration [4].References:[1] Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 1–4 (2016)[2] Aetukuri, N. B. et al. Flexible Ion-Conducting Composite Membranes for Lithium Batteries. Adv. Energy Mater. 5, 1–6 (2015)[3] Samuthira Pandian, A. et al. Flexible, Synergistic Ceramic-Polymer Hybrid Solid-State Electrolyte for Secondary Lithium Metal Batteries. ACS Appl. Energy Mater. 3, 12709–12715 (2020)[4] Isaac, J. A., Mangani, L. R., Devaux, D. & Bouchet, R. Electrochemical Impedance Spectroscopy of PEO-LATP Model Multilayers: Ionic Charge Transport and Transfer. ACS Appl. Mater. Interfaces 14, 13158–13168 (2022)
Style APA, Harvard, Vancouver, ISO itp.
3

Issa, Sébastien. "Synthèse et caractérisation d'électrolytes solides hybrides pour les batteries au lithium métal". Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0046.

Pełny tekst źródła
Streszczenie:
Les problématiques engendrées par l’extraction et l’utilisation intensives des ressources fossiles ont forcé l’humanité à se tourner vers le développement d’énergies renouvelables et de véhicules électriques. Cependant, ces technologies doivent être couplées à des moyens de stockage de l’énergie efficaces pour exploiter leur potentiel. Les systèmes embarquant une anode de lithium métallique sont particulièrement intéressants car ils présentent une densité d’énergie élevée. Cependant, cette technologie souffre de la formation de dendrites pouvant déclencher des courts-circuits provoquant l’explosion du dispositif. Ainsi, de nombreux efforts ont été consacrés à l’élaboration d’électrolytes solides polymères (SPE) à base de POE permettant de constituer une barrière qui bloque la croissance dendritique tout en préservant les propriétés de conduction ionique. Cependant, la conductivité ionique des SPE à base de POE décroît fortement avec la température. A l’heure actuelle, les meilleurs SPE de la littérature nécessiteraient de fonctionner à 60 °C, ce qui signifie qu’une partie de l’énergie de la batterie sera détournée de son utilisation pour maintenir cette température. Ainsi, l’objectif principal de ce travail de thèse est de concevoir un SPE permettant le fonctionnement de la technologie de batterie au lithium métal à température ambiante. Ces SPE doivent présenter une conductivité ionique élevée à température ambiante (≈ 10-4 S.cm-1) et des propriétés mécaniques permettant l’inhibition du phénomène de croissance dendritique. Pour cela, les objectifs du projet sont focalisés sur le développement de nouveaux SPE nanocomposites et hybrides
The problems caused by the intensive extraction and use of fossil fuels have forced humanity to turn to the development of renewable energies and electric vehicles. However, these technologies need to be coupled with efficient energy storage means to exploit their potential. Lithium metal anode systems are particularly interesting because they have a high energy density. However, this technology suffers from the formation of dendrites that can trigger short circuits causing the device to explode. Thus, many efforts have been devoted to the development of POE-based solid polymer electrolytes (SPEs) that provide a barrier that blocks dendritic growth while preserving ionic conduction properties. However, the ionic conductivity of POE-based SPEs decreases strongly with temperature. Currently, the best SPEs in the literature would require operation at 60 °C, which means that some of the energy in the battery will be diverted from its use to maintain this temperature. Thus, the main objective of this thesis work is to design an SPE that allows the operation of lithium metal battery technology at room temperature. These SPEs must exhibit high ionic conductivity at room temperature (≈ 10-4 S.cm-1) and mechanical properties that allow the inhibition of the dendritic growth phenomenon. For this, the objectives of the project are focused on the development of new nanocomposite and hybrid SPEs
Style APA, Harvard, Vancouver, ISO itp.
4

Cipolla, Alex. "Etude et amélioration d'accumulateurs à anode de lithium métal en couplant modélisation et caractérisation". Thesis, Université Grenoble Alpes, 2022. https://tel.archives-ouvertes.fr/tel-03689299.

Pełny tekst źródła
Streszczenie:
Le lithium métal représente le candidat optimal comme électrode négative dans les batteries au lithium, de par sa capacité théorique élevée (3860 mAh.g-1) et son faible potentiel (-3,04 V ESH). En revanche, l'inconvénient majeur de cette technologie est la formation de dendrites qui peut provoquer des emballements thermiques et des courts-circuits internes. Ces dernières sont également responsables de la durée de vie limitée des cellules lithium métal. La maîtrise de l’électrodépôt du lithium est nécessaire pour le développement de cette technologie haute densité d’énergie et demande une compréhension approfondie de ces phénomènes dendritiques.L’objectif de ce travail est de corréler données expérimentales et modèle afin de comprendre la formation et la croissance des dendrites. Le modèle permet de théoriser les conditions dans lesquelles la croissance des dendrites est facilitée ou évitée, et comment les propriétés des composants de la cellule et la nature de la surface d'électrode peuvent l'affecter, pour suggérer des solutions permettant de réduire les dendrites. D'autre part, la partie expérimentale a pour but de définir un cadre de techniques permettant de déterminer des paramètres fiables à utiliser dans le modèle, et de valider ses tendances.Le modèle continu proposé montre que l’interphase électrode/électrolyte (‘SEI’ pour Solid Electrolyte Interphase) est fondamentale pour évaluer la formation de dendrites et leur croissance, tandis que la définition d’une densité de courant limite n'est pas une condition suffisante pour éviter les dendrites. Cette prise en compte de la SEI dans le modèle permet d’étudier l'influence de ses propriétés mécaniques et électrochimiques sur la croissance dendritique. A partir de la géométrie de surface initiale et des propriétés électrochimiques et mécaniques des composants, le modèle est capable de prédire les conditions qui favorisent la croissance dendritique et de distinguer différentes morphologies de surface. Des dendrites arborescentes (tree-like), moussues (mossy-like) et whiskers sont obtenues selon la densité de courant appliquée. De plus, l'ajout de la mécanique de la SEI permet au modèle de faire la distinction entre la croissance induite par la pointe (tip-induced) et celle induite par la racine (root-induced). À partir des résultats du modèle, une SEI avec une faible résistivité, un coefficient de diffusion élevé et une vitesse de réaction rapide réduit la croissance des dendrites, tandis que la résistance mécanique de la SEI est une arme à double tranchant puisqu’une résistance élevée peut à la fois limiter l'expansion incontrôlée de l’électrode de lithium, mais également stimuler la croissance en cas de fractures.Enfin, les propriétés électrochimiques et mécaniques de la SEI formée dans un électrolyte liquide sont déterminées par spectroscopie d'impédance électrochimique (SIE) et microscopie à force atomique (AFM). L’évolution des spectres d'impédance en fonction du temps permet de caractériser l'évolution de la SEI et de déterminer ses propriétés (épaisseur, coefficient de diffusion et résistivité). D'autre part, l’AFM est utilisée dans le mode spectroscopie de force, à partir duquel il est possible de déterminer des valeurs locales du module de Young de la SEI. La spectrométrie photoélectronique X (XPS), capable d'identifier les composants chimiques à la surface des électrodes, permet de valider les résultats de l’AFM. Enfin, les tendances prédites par le modèle sont validées grâce à la mise au point d’une nouvelle configuration de cellule lithium métal, adaptée à une étude operando de l’électrodépôt du lithium métal par microscopie optique.Ce travail représente une étude complète de la formation et croissance des dendrites dans les accumulateurs au lithium métal. Tandis que seuls les électrolytes liquides sont considérés ici, la méthodologie pourrait tout à fait être étendue aux électrolytes solides et aux revêtements artificiels à la suite de ce travail
Lithium metal represents the optimal candidate for the negative electrode in lithium batteries, due to its high theoretical capacity (3860 mAh.g-1) and low potential (-3.04 V SHE). On the other hand, the major drawback of this technology is the formation of dendrites, which can cause thermal runaway and internal short-circuits, and are responsible for the limited lifetime of the cells. A dendrite-free lithium deposition is needed to improve this high energy density technology, thus, a deeper understanding of the phenomena and parameters that influence dendrite growth and formation is necessary.The goal of this work is the correlation between experiments and modelling, to understand the formation and the growth of dendrites. The output of the model allows one to theorize in which conditions dendrites growth is boosted or avoided, and how the properties of the cell components and the design of the electrode surface can affect it, to suggest solutions to reduce dendrites. On the other hand, the experimental work has the purpose to define a framework of techniques to find reliable parameters to be used in the model, and to validate the trends of the model.The proposed continuum model shows that the Solid Electrolyte Interphase (SEI) is fundamental to assess dendrites formation and growth, while the definition of a limiting current density is not a sufficient condition to avoid dendrites. Thanks to the introduction of the SEI concept and properties, the proposed model studies the influence of its mechanical and electrochemical properties on the dendritic growth. Starting from the initial surface geometry and the electrochemical and mechanical properties of the cell components, the model is able to predict the conditions that favours dendritic growth and to distinguish different surface morphologies. Tree-like, mossy-like and whisker dendrites are obtained, depending on the applied current density. Moreover, the addition of the mechanics of the SEI allows the model to distinguish between tip-induced growth and root-induced growth. From the model results, it can be concluded that a SEI with low resistivity, high diffusion coefficient and fast reaction rate can reduce dendrite growth, while the mechanical resistance of the SEI is a double-edge sword because it can limit the uncontrolled expansion of the lithium electrode but also boost the root-growth in case of fractures.Electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM) techniques are used to find electrochemical and mechanical properties of the SEI formed in liquid electrolytes. By following electrochemical impedance response over time, it is possible to observe SEI evolution and determine mean values for its thickness, its diffusion coefficient and its conductivity. On the other hand, the AFM technique is used in the force spectroscopy mode, from which it is possible to determine local values of the SEI Young’s modulus. X-ray photoelectron spectroscopy (XPS) technique, which is able to identify the chemical components on the electrode surface, helps to validate the results of AFM. Finally, the trends predicted by the model are validated with a novel cell configuration suitable for an operando optical microscopy study of lithium metal stripping/plating.This work represents a comprehensive study on dendrites formation and growth in lithium metal batteries. While it considers only liquid electrolytes so far, as a perspective, it could easily be expanded to solid electrolytes and artificial coatings
Style APA, Harvard, Vancouver, ISO itp.
5

Pelletier, Bérengère. "Caractérisation approfondie de copolymères triblocs PS-b-POE-b-PS utilisés en tant qu'Electrolytes Polymères Solides pour les batteries Lithium-Métal-Polymère". Electronic Thesis or Diss., Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4730.

Pełny tekst źródła
Streszczenie:
Aujourd’hui, la recherche sur les technologies de stockage d’énergie connaît un essor important dû au fort développement de l’électronique portable et des modes de transport écologiques. La plupart des batteries commercialisées utilisent des électrolytes liquides ou à base de liquides qui limitent leur stabilité thermique, la densité d’énergie et la sécurité. Ces limitations pourraient être considérablement diminuées par l’utilisation d’électrolytes polymères solides (SPE) et la technologie lithium métal polymère (LMP). L’objectif des SPE est de combiner au sein du même matériau une conductivité ionique élevée et une tenue mécanique suffisante pour éviter la formation de dentrites de lithium. Dans ce contexte, les copolymères triblocs PS-b-POE-b-PS, avec le POE comme bloc conducteur et le bloc PS apportant la résistance mécanique, sont d’excellents candidats. Afin d’établir des corrélations composition/morphologie/performance, le but de mes travaux de thèse est d’obtenir une caractérisation détaillée des copolymères à blocs synthétisés. Ainsi, les PS-b-POE-b-PS synthétisés (NMP) ont été analysés par chromatographie liquide aux conditions limites de désorption LC LCD. De plus, les analyses de la nano structuration (AFM, TEM et SAXS), des propriétés thermiques (DSC) et mécaniques (DMA) sont discutées. Enfin, des mesures d’impédance ont été effectuées via des cellules symétriques Lithium/ Electrolyte/ Lithium
The research on electrochemical storage of energy is today in a stage of fast and profound evolution owing to the strong development of portable electronics requesting power energy as well as the requirement of greener transport modes. Most commercial batteries use liquid or liquid-based electrolytes, which limits their thermal stability, energy density and safety. These limitations could be considerably offset by the use of solid polymer electrolytes (SPE) and lithium metal polymer technology (LMP). However, the main drawback of the SPE is the decrease of the ionic conductivity with increasing mechanical strength, necessary to avoid the formation of lithium dendrites during the recharge of the battery. In this context, triblock copolymers PS-b-PEO-b-PS with a PEO block as ionic conductor and PS block providing mechanical strength was a promising candidate as SPE. In order to build composition/morphology/performance relationships, the aim of my PhD is to characterize carefully the block copolymer. For that purpose, the PS-b-PEO-b-PS synthesized (NMP) were characterized using Liquid Chromatography under Limiting Conditions of Desorption (LC LCD). Furthermore, analyses of morphologies and nano-structure by Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS) techniques, analyses of thermal (DSC) and mechanical (DSC) properties will be also discussed. Finally, measures of impedance were made via symmetric cells Lithium / Electrolyte / Lithium
Style APA, Harvard, Vancouver, ISO itp.
6

Gle, David. "Synthèse de copolymères à architectures complexes à base de POE utilisés en tant qu'électrolytes polymères solides pour une application dans les batteries lithium métal-polymère". Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4761/document.

Pełny tekst źródła
Streszczenie:
Dans le contexte d'un développement durable, les véhicules électriques apparaissent comme une solution incontournable dans le futur. Parmi les dernières évolutions sur les batteries, les systèmes constitués d'une électrode au lithium (technologie lithium métal) présente des performances remarquables en termes de densité d'énergie. L'inconvénient majeur de cette méthodologie est lié à la formation de dendrites lors de la recharge susceptibles d'occasionner des courts-circuits conduisant à l'explosion de la batterie. C'est dans cet axe que s'inscrit mon sujet de thèse dont l'objectif est de développer un électrolyte polymère solide présentant une conductivité ionique élevée (2.10-4 S.cm-1 à40°C) et une tenue mécanique suffisante (30 MPa) pour limiter les phénomènes de croissance dendritique. Pour cela, la polymérisation contrôlée par les nitroxydes (NMP) a été utilisée pour synthétiser des copolymères à blocs avec un bloc possédant des groupes d'oxyde d'éthylène –CH2-CH2-O- permettant la conduction des ions lithium et un bloc de polystyrène assurant la tenue mécanique de l'électrolyte final. Le bloc assurant la conduction ionique des architectures ainsi synthétisées sont constituées soit de POE sous forme linéaire soit de POE sous forme de peigne
In the context of sustainable development, electric vehicles appear to be a major solution for the future. Among the lastest technologies, the Lithium Metal Polymer battery has presented very interesting performances in terms of energy density. The main drawback of this system is the formation of lithium dendrites during the refill of the battery that could cause short circuits leading to the explosion of the battery. The aim of my PhD is to develop a Solid Polymer Electrolyte showing a high ionic conductivity (2.10-4 S.cm-1 at 40°C) and a high mechanical strength (30 MPa) to prevent dendritic growth. For that purpose, Nitroxide Mediated Polymerization is used to synthesize block copolymers with a PEO moiety for ionic conduction –CH2-CH2-O- and polystyrene for mechanical strength. Different kind of architectures have been synthesized : block copolymer with linear PEO moiety or with grafted PEO moiety
Style APA, Harvard, Vancouver, ISO itp.
7

Gle, David. "Synthèse de copolymères à architectures complexes à base de POE utilisés en tant qu'électrolytes polymères solides pour une application dans les batteries lithium métal-polymère". Electronic Thesis or Diss., Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4761.

Pełny tekst źródła
Streszczenie:
Dans le contexte d'un développement durable, les véhicules électriques apparaissent comme une solution incontournable dans le futur. Parmi les dernières évolutions sur les batteries, les systèmes constitués d'une électrode au lithium (technologie lithium métal) présente des performances remarquables en termes de densité d'énergie. L'inconvénient majeur de cette méthodologie est lié à la formation de dendrites lors de la recharge susceptibles d'occasionner des courts-circuits conduisant à l'explosion de la batterie. C'est dans cet axe que s'inscrit mon sujet de thèse dont l'objectif est de développer un électrolyte polymère solide présentant une conductivité ionique élevée (2.10-4 S.cm-1 à40°C) et une tenue mécanique suffisante (30 MPa) pour limiter les phénomènes de croissance dendritique. Pour cela, la polymérisation contrôlée par les nitroxydes (NMP) a été utilisée pour synthétiser des copolymères à blocs avec un bloc possédant des groupes d'oxyde d'éthylène –CH2-CH2-O- permettant la conduction des ions lithium et un bloc de polystyrène assurant la tenue mécanique de l'électrolyte final. Le bloc assurant la conduction ionique des architectures ainsi synthétisées sont constituées soit de POE sous forme linéaire soit de POE sous forme de peigne
In the context of sustainable development, electric vehicles appear to be a major solution for the future. Among the lastest technologies, the Lithium Metal Polymer battery has presented very interesting performances in terms of energy density. The main drawback of this system is the formation of lithium dendrites during the refill of the battery that could cause short circuits leading to the explosion of the battery. The aim of my PhD is to develop a Solid Polymer Electrolyte showing a high ionic conductivity (2.10-4 S.cm-1 at 40°C) and a high mechanical strength (30 MPa) to prevent dendritic growth. For that purpose, Nitroxide Mediated Polymerization is used to synthesize block copolymers with a PEO moiety for ionic conduction –CH2-CH2-O- and polystyrene for mechanical strength. Different kind of architectures have been synthesized : block copolymer with linear PEO moiety or with grafted PEO moiety
Style APA, Harvard, Vancouver, ISO itp.
8

Pelletier, Bérengère. "Caractérisation approfondie de copolymères triblocs PS-b-POE-b-PS utilisés en tant qu'Electrolytes Polymères Solides pour les batteries Lithium-Métal-Polymère". Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4730/document.

Pełny tekst źródła
Streszczenie:
Aujourd’hui, la recherche sur les technologies de stockage d’énergie connaît un essor important dû au fort développement de l’électronique portable et des modes de transport écologiques. La plupart des batteries commercialisées utilisent des électrolytes liquides ou à base de liquides qui limitent leur stabilité thermique, la densité d’énergie et la sécurité. Ces limitations pourraient être considérablement diminuées par l’utilisation d’électrolytes polymères solides (SPE) et la technologie lithium métal polymère (LMP). L’objectif des SPE est de combiner au sein du même matériau une conductivité ionique élevée et une tenue mécanique suffisante pour éviter la formation de dentrites de lithium. Dans ce contexte, les copolymères triblocs PS-b-POE-b-PS, avec le POE comme bloc conducteur et le bloc PS apportant la résistance mécanique, sont d’excellents candidats. Afin d’établir des corrélations composition/morphologie/performance, le but de mes travaux de thèse est d’obtenir une caractérisation détaillée des copolymères à blocs synthétisés. Ainsi, les PS-b-POE-b-PS synthétisés (NMP) ont été analysés par chromatographie liquide aux conditions limites de désorption LC LCD. De plus, les analyses de la nano structuration (AFM, TEM et SAXS), des propriétés thermiques (DSC) et mécaniques (DMA) sont discutées. Enfin, des mesures d’impédance ont été effectuées via des cellules symétriques Lithium/ Electrolyte/ Lithium
The research on electrochemical storage of energy is today in a stage of fast and profound evolution owing to the strong development of portable electronics requesting power energy as well as the requirement of greener transport modes. Most commercial batteries use liquid or liquid-based electrolytes, which limits their thermal stability, energy density and safety. These limitations could be considerably offset by the use of solid polymer electrolytes (SPE) and lithium metal polymer technology (LMP). However, the main drawback of the SPE is the decrease of the ionic conductivity with increasing mechanical strength, necessary to avoid the formation of lithium dendrites during the recharge of the battery. In this context, triblock copolymers PS-b-PEO-b-PS with a PEO block as ionic conductor and PS block providing mechanical strength was a promising candidate as SPE. In order to build composition/morphology/performance relationships, the aim of my PhD is to characterize carefully the block copolymer. For that purpose, the PS-b-PEO-b-PS synthesized (NMP) were characterized using Liquid Chromatography under Limiting Conditions of Desorption (LC LCD). Furthermore, analyses of morphologies and nano-structure by Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS) techniques, analyses of thermal (DSC) and mechanical (DSC) properties will be also discussed. Finally, measures of impedance were made via symmetric cells Lithium / Electrolyte / Lithium
Style APA, Harvard, Vancouver, ISO itp.
9

Cluzeau, Benoît. "Développement de batteries lithium-ion « Tout solide » pour véhicules électriques". Electronic Thesis or Diss., Pau, 2022. http://www.theses.fr/2022PAUU3071.

Pełny tekst źródła
Streszczenie:
L'amélioration continue des performances des batteries Li-ion au cours des deux dernières décennies a permis l'introduction de nombreuses automobiles électriques sur le marché. Cependant, les demandes concernant la sécurité, l'autonomie et la charge rapide des véhicules nécessitent le développement de nouvelles technologies plus performantes.C'est dans cette optique qu'a été fondé le projet RAISE 2024 dans lequel s'inscrit cette thèse. Cette collaboration entre SAFT, ARKEMA et l'université de Pau et des pays de l'Adour vise à développer une batterie à électrolyte solide. Le développement d'un tel système possède un objectif double, à savoir le renforcement de la sécurité lors du fonctionnement des batteries, et l'utilisation de nouveaux matériaux d'électrode de plus forte capacité comme le lithium métal.Pour atteindre cet objectif, deux électrolytes ont été étudiés dans cette thèse. Le premier est constitué d'un électrolyte polymère gélifié obtenu par la réticulation d'un polymère mélangé à un électrolyte liquide. Il permet d'obtenir de bonnes performances en matière de conductivité ionique à température ambiante (10-3 S/cm) et son utilisation en batterie a permis de réaliser plus de 700 cycles avec une rétention de capacité supérieure à 80%. L'impact de la matrice polymère sur les performances a été étudié à travers une série de tests électrochimiques et d'analyse de surface (XPS). Enfin, les tests de sécurité effectués sur des cellules contenant cet électrolyte permettent de mettre en évidence une diminution significative de la quantité d'énergie libérée.Enfin, un deuxième système conducteur ionique a été étudié. Il se présente sous la forme d'une membrane polymère, plastifiée avec un liquide ionique et un solvant. Cette membrane permet d'obtenir une conductivité ionique supérieure à 10-4 S/cm à température ambiante. Couplée à un électrolyte gélifié dans les électrodes pour favoriser le contact au niveau des interfaces, la membrane présente une résistance élevée à la formation de dendrites de lithium. Son utilisation dans une cellule composée d'une électrode positive de NMC 811 et d'une électrode négative de lithium métal a permis de réaliser plus de 200 cycles à un régime de C/5, D/2 avant de perdre 20% de la capacité initiale
Improvements in the performances of Li-ion batteries in the past two decades, has enabled the introduction of many electric cars on the market. However, demands regarding the safety, autonomy, and fast charging require the development of new and more efficient technologies.It was in this context that the RAISE 2024 project, in which this thesis is part of, was founded. This collaboration between ARKEMA, SAFT and the University of Pau and Adour Countries aims to develop a lithium ion battery with a solid electrolyte. The development of such a system has a double objective: the reinforcement of safety during operation, and the use of new electrode materials with higher capacity such as metallic lithium.To achieve this objective, two electrolytes were studied in this thesis. The first consists of a gelled electrolyte obtained by crosslinking of a polymer matrix. It provides good performance in terms of ionic conductivity at room temperature (10-3 S/cm). More than 700 cycles were achieved with this electrolyte in a battery cell before reaching 80% of initial capacity. The impact of polymer matrix on performance was studied through a series of electrochemical tests and surface analysis (XPS). Finally, safety tests (nail penetration) carried out on cells filled with this electrolyte show a significant reduction of energy released.Finally, a second ionic conductor was studied. It comes in the form of a polymer membrane, plasticized with an ionic liquid and a solvent. This membrane exhibits ionic conductivity above 10-4 S/cm at room temperature. Coupled with a gel electrolyte in electrodes to improve interfacial contact, the membrane shows a high resistance to lithium dendrites. A cell using this electrolyte and composed of NMC 811 as positive electrode and lithium metal as negative electrode performed 200 cycles at a rate of C/5, D/2 before losing 20% of its initial capacity
Style APA, Harvard, Vancouver, ISO itp.
10

Devaux, Didier. "Caractérisation et optimisation de copolymères à blocs comme électrolytes de batteries lithium métal". Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4748/document.

Pełny tekst źródła
Streszczenie:
Le facteur clé limitant le déploiement des accumulateurs au lithium métal est dû à la formation de dendrites de lithium métallique à l'anode au cours de la recharge. Une solution consiste à employer un électrolyte solide polymère. Un copolymère à blocs est composé d'un ou plusieurs blocs conducteurs à base de POE (poly(oxyde d'éthylène)), linéaire ou branchée, dopés en sel de lithium (LiTFSI) et de blocs de renforts mécaniques qui idéalement mitigent la croissance dendritique. Ces matériaux ont la particularité de s'auto-assembler en domaines nanométriques. Les interfaces entre les domaines génèrent de bonnes propriétés mécaniques à l'échelle macroscopique tandis que localement la dynamique des chaînes POE demeure élevée, assurant la conduction ionique.Ce travail de thèse porte sur les caractérisations physico-chimiques d'électrolytes copolymères, selon différentes architectures (diblocs, triblocs et étoilées) et de l'optimisation de leurs compositions. Une étude fondamentale des polymères dopés en sel a mis en évidence les principaux mécanismes de transport ionique, ainsi que l'impact des groupes terminaux à faible masse molaire sur la conductivité et la viscosité. Cette étape a permis de sélectionner les meilleurs candidats. L'étude de la stabilité des électrolytes vis-à-vis du lithium a été menée. Après avoir formulé des cathodes, des batteries plastiques ont été assemblées et testées avec succès par cyclages galvanostatiques, en température [40°C-100°C] et à des régimes élevés. Enfin, un prototype de 6 mAh a réalisé plus de 400 cycles à des régimes C/4 et D/2 à 100°C
The key limiting factor for the deployment of Lithium metal batteries is the formation of lithium dendrites at the anode during recharge. One solution consists in the use of a solid polymer electrolyte. A bloc copolymer is composed of one or several conductive blocks based on PEO (poly(ethylene oxide)), linear or branched, doped with a lithium salt (LiTFSI) and reinforced blocks that ideally mitigate the dendritic growth. These materials can self-organize in nanometric domains. The interfaces between the domains generate sufficient mechanical properties at the macroscopic level whilst, locally, the PEO chain dynamics remain high, ensuring ionic conduction.This thesis deals with physico-chemical characterizations of these copolymer electrolytes, with different architectures (diblock, triblock and star shaped), and the optimization of their composition. A fundamental study of doped polymers highlighted the main mechanisms of ionic transport and the impact of the end groups at low molar mass on conductivity and viscosity. This step enabled a selection of the best candidates to be made. A study of the electrolyte stability with respect to lithium was carried out. After the formulation of cathodes, plastic batteries were assembled and successfully tested by galvanostatic cycling under temperature [40°C-100°C] and high regime. Finally, a 6 mAh prototype realised more than 400 cycles under the regime C/4 and D/2 at 100°C
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii