Spis treści
Gotowa bibliografia na temat „Basal radial glia cells (bRG)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Basal radial glia cells (bRG)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Basal radial glia cells (bRG)"
Kullmann, Jan A., Sophie Meyer, Fabrizia Pipicelli, Christina Kyrousi, Felix Schneider, Nora Bartels, Silvia Cappello i Marco B. Rust. "Profilin1-Dependent F-Actin Assembly Controls Division of Apical Radial Glia and Neocortex Development". Cerebral Cortex 30, nr 6 (20.12.2019): 3467–82. http://dx.doi.org/10.1093/cercor/bhz321.
Pełny tekst źródłaPenisson, Maxime, Mingyue Jin, Shengming Wang, Shinji Hirotsune, Fiona Francis i Richard Belvindrah. "Lis1 mutation prevents basal radial glia-like cell production in the mouse". Human Molecular Genetics 31, nr 6 (12.10.2021): 942–57. http://dx.doi.org/10.1093/hmg/ddab295.
Pełny tekst źródłaSawada, Kazuhiko. "Neurogenesis of Subventricular Zone Progenitors in the Premature Cortex of Ferrets Facilitated by Neonatal Valproic Acid Exposure". International Journal of Molecular Sciences 23, nr 9 (28.04.2022): 4882. http://dx.doi.org/10.3390/ijms23094882.
Pełny tekst źródłaMeyerink, Brandon L., Neeraj K. Tiwari i Louis-Jan Pilaz. "Ariadne’s Thread in the Developing Cerebral Cortex: Mechanisms Enabling the Guiding Role of the Radial Glia Basal Process during Neuron Migration". Cells 10, nr 1 (22.12.2020): 3. http://dx.doi.org/10.3390/cells10010003.
Pełny tekst źródłaPereida-Jaramillo, Elizabeth, Gabriela B. Gómez-González, Angeles Edith Espino-Saldaña i Ataúlfo Martínez-Torres. "Calcium Signaling in the Cerebellar Radial Glia and Its Association with Morphological Changes during Zebrafish Development". International Journal of Molecular Sciences 22, nr 24 (16.12.2021): 13509. http://dx.doi.org/10.3390/ijms222413509.
Pełny tekst źródłaMoore, Rachel, i Paula Alexandre. "Delta-Notch Signaling: The Long and The Short of a Neuron’s Influence on Progenitor Fates". Journal of Developmental Biology 8, nr 2 (26.03.2020): 8. http://dx.doi.org/10.3390/jdb8020008.
Pełny tekst źródłaLi, Zhen, William A. Tyler, Ella Zeldich, Gabriel Santpere Baró, Mayumi Okamoto, Tianliuyun Gao, Mingfeng Li, Nenad Sestan i Tarik F. Haydar. "Transcriptional priming as a conserved mechanism of lineage diversification in the developing mouse and human neocortex". Science Advances 6, nr 45 (listopad 2020): eabd2068. http://dx.doi.org/10.1126/sciadv.abd2068.
Pełny tekst źródłaGolden, J. A., J. C. Zitz, K. McFadden i C. L. Cepko. "Cell migration in the developing chick diencephalon". Development 124, nr 18 (15.09.1997): 3525–33. http://dx.doi.org/10.1242/dev.124.18.3525.
Pełny tekst źródłaZhang, Sanguo, Huanhuan Joyce Wang, Jia Li, Xiao-Ling Hu i Qin Shen. "Radial Glial Cell-Derived VCAM1 Regulates Cortical Angiogenesis Through Distinct Enrichments in the Proximal and Distal Radial Processes". Cerebral Cortex 30, nr 6 (6.01.2020): 3717–30. http://dx.doi.org/10.1093/cercor/bhz337.
Pełny tekst źródłaZaidi, Donia, Kaviya Chinnappa i Fiona Francis. "Primary Cilia Influence Progenitor Function during Cortical Development". Cells 11, nr 18 (16.09.2022): 2895. http://dx.doi.org/10.3390/cells11182895.
Pełny tekst źródłaRozprawy doktorskie na temat "Basal radial glia cells (bRG)"
Wimmer, Ryszard. "Migration of neural stem cells during human neocortical development". Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLS016.
Pełny tekst źródłaIn gyrencephalic species, and in particular in humans, the strong size increase of the neocortex is largely supported by an expanded neurogenic niche, the outer subventricular zone (oSVZ). This is largely due to the amplification of a neural stem cell population, the basal radial glial cells (bRGs, also known as oRGs). bRG cells colonize the oSVZ through an acto-myosin dependent movement called mitotic somal translocation (MST). The exact molecular mechanism of MST, whether the microtubule cytoskeleton also controls other steps of bRG cell translocation, and the contribution of these movements to bRG cell dissemination into the human developing neocortex are however unknown. Here, using live imaging of gestational week 14-21 human fetal tissue and cerebral organoids, we identify a two-step mode of translocation for bRG cells. On top MST, bRG cells undergo a microtubule-dependent movement during interphase, that we call interphasic somal translocation (IST). IST is slower than MST and controlled by the LINC complex that recruits the dynein molecular motor and its activator LIS1 to the nuclear envelope for transport. Consequently, IST is affected in LIS1 patient derived organoids. We furthermore show that MST occurs during prometaphase and is therefore a mitotic spindle translocation event. MST is controlled by the mitotic cell rounding molecular pathway, that increases the cell cortex stiffness to drive translocation. Both IST and MST are bidirectional with a net basal movement of 0,57 mm per month of human fetal gestation. We show that 85% of this movement is dependent on IST, that is both more polarized and more processive than MST. Finally, we demonstrate that IST and MST are conserved in bRG-related glioblastoma cells and occur through the same molecular pathways. Overall, our work identifies how bRG cells colonize the human fetal cortex, and how these mechanisms can be linked to pathological conditions