Artykuły w czasopismach na temat „Bandit Contextuel”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Bandit Contextuel”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Gisselbrecht, Thibault, Sylvain Lamprier i Patrick Gallinari. "Collecte ciblée à partir de flux de données en ligne dans les médias sociaux. Une approche de bandit contextuel". Document numérique 19, nr 2-3 (30.12.2016): 11–30. http://dx.doi.org/10.3166/dn.19.2-3.11-30.
Pełny tekst źródłaDimakopoulou, Maria, Zhengyuan Zhou, Susan Athey i Guido Imbens. "Balanced Linear Contextual Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 3445–53. http://dx.doi.org/10.1609/aaai.v33i01.33013445.
Pełny tekst źródłaTong, Ruoyi. "A survey of the application and technical improvement of the multi-armed bandit". Applied and Computational Engineering 77, nr 1 (16.07.2024): 25–31. http://dx.doi.org/10.54254/2755-2721/77/20240631.
Pełny tekst źródłaYang, Luting, Jianyi Yang i Shaolei Ren. "Contextual Bandits with Delayed Feedback and Semi-supervised Learning (Student Abstract)". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 18 (18.05.2021): 15943–44. http://dx.doi.org/10.1609/aaai.v35i18.17968.
Pełny tekst źródłaSharaf, Amr, i Hal Daumé III. "Meta-Learning Effective Exploration Strategies for Contextual Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 11 (18.05.2021): 9541–48. http://dx.doi.org/10.1609/aaai.v35i11.17149.
Pełny tekst źródłaDu, Yihan, Siwei Wang i Longbo Huang. "A One-Size-Fits-All Solution to Conservative Bandit Problems". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 8 (18.05.2021): 7254–61. http://dx.doi.org/10.1609/aaai.v35i8.16891.
Pełny tekst źródłaVaratharajah, Yogatheesan, i Brent Berry. "A Contextual-Bandit-Based Approach for Informed Decision-Making in Clinical Trials". Life 12, nr 8 (21.08.2022): 1277. http://dx.doi.org/10.3390/life12081277.
Pełny tekst źródłaLi, Jialian, Chao Du i Jun Zhu. "A Bayesian Approach for Subset Selection in Contextual Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 9 (18.05.2021): 8384–91. http://dx.doi.org/10.1609/aaai.v35i9.17019.
Pełny tekst źródłaQu, Jiaming. "Survey of dynamic pricing based on Multi-Armed Bandit algorithms". Applied and Computational Engineering 37, nr 1 (22.01.2024): 160–65. http://dx.doi.org/10.54254/2755-2721/37/20230497.
Pełny tekst źródłaAtsidakou, Alexia, Constantine Caramanis, Evangelia Gergatsouli, Orestis Papadigenopoulos i Christos Tzamos. "Contextual Pandora’s Box". Proceedings of the AAAI Conference on Artificial Intelligence 38, nr 10 (24.03.2024): 10944–52. http://dx.doi.org/10.1609/aaai.v38i10.28969.
Pełny tekst źródłaZhang, Qianqian. "Real-world Applications of Bandit Algorithms: Insights and Innovations". Transactions on Computer Science and Intelligent Systems Research 5 (12.08.2024): 753–58. http://dx.doi.org/10.62051/ge4sk783.
Pełny tekst źródłaWang, Zhiyong, Xutong Liu, Shuai Li i John C. S. Lui. "Efficient Explorative Key-Term Selection Strategies for Conversational Contextual Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 8 (26.06.2023): 10288–95. http://dx.doi.org/10.1609/aaai.v37i8.26225.
Pełny tekst źródłaBansal, Nipun, Manju Bala i Kapil Sharma. "FuzzyBandit An Autonomous Personalized Model Based on Contextual Multi Arm Bandits Using Explainable AI". Defence Science Journal 74, nr 4 (26.04.2024): 496–504. http://dx.doi.org/10.14429/dsj.74.19330.
Pełny tekst źródłaTang, Qiao, Hong Xie, Yunni Xia, Jia Lee i Qingsheng Zhu. "Robust Contextual Bandits via Bootstrapping". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 13 (18.05.2021): 12182–89. http://dx.doi.org/10.1609/aaai.v35i13.17446.
Pełny tekst źródłaWu, Jiazhen. "In-depth Exploration and Implementation of Multi-Armed Bandit Models Across Diverse Fields". Highlights in Science, Engineering and Technology 94 (26.04.2024): 201–5. http://dx.doi.org/10.54097/d3ez0n61.
Pełny tekst źródłaWang, Kun. "Conservative Contextual Combinatorial Cascading Bandit". IEEE Access 9 (2021): 151434–43. http://dx.doi.org/10.1109/access.2021.3124416.
Pełny tekst źródłaElwood, Adam, Marco Leonardi, Ashraf Mohamed i Alessandro Rozza. "Maximum Entropy Exploration in Contextual Bandits with Neural Networks and Energy Based Models". Entropy 25, nr 2 (18.01.2023): 188. http://dx.doi.org/10.3390/e25020188.
Pełny tekst źródłaBaheri, Ali. "Multilevel Constrained Bandits: A Hierarchical Upper Confidence Bound Approach with Safety Guarantees". Mathematics 13, nr 1 (3.01.2025): 149. https://doi.org/10.3390/math13010149.
Pełny tekst źródłaStrong, Emily, Bernard Kleynhans i Serdar Kadıoğlu. "MABWISER: Parallelizable Contextual Multi-armed Bandits". International Journal on Artificial Intelligence Tools 30, nr 04 (czerwiec 2021): 2150021. http://dx.doi.org/10.1142/s0218213021500214.
Pełny tekst źródłaLee, Kyungbok, Myunghee Cho Paik, Min-hwan Oh i Gi-Soo Kim. "Mixed-Effects Contextual Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 38, nr 12 (24.03.2024): 13409–17. http://dx.doi.org/10.1609/aaai.v38i12.29243.
Pełny tekst źródłaOh, Min-hwan, i Garud Iyengar. "Multinomial Logit Contextual Bandits: Provable Optimality and Practicality". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 10 (18.05.2021): 9205–13. http://dx.doi.org/10.1609/aaai.v35i10.17111.
Pełny tekst źródłaZhao, Yisen. "Enhancing conversational recommendation systems through the integration of KNN with ConLinUCB contextual bandits". Applied and Computational Engineering 68, nr 1 (6.06.2024): 8–16. http://dx.doi.org/10.54254/2755-2721/68/20241388.
Pełny tekst źródłaChen, Qiufan. "A survey on contextual multi-armed bandits". Applied and Computational Engineering 53, nr 1 (28.03.2024): 287–95. http://dx.doi.org/10.54254/2755-2721/53/20241593.
Pełny tekst źródłaMohaghegh Neyshabouri, Mohammadreza, Kaan Gokcesu, Hakan Gokcesu, Huseyin Ozkan i Suleyman Serdar Kozat. "Asymptotically Optimal Contextual Bandit Algorithm Using Hierarchical Structures". IEEE Transactions on Neural Networks and Learning Systems 30, nr 3 (marzec 2019): 923–37. http://dx.doi.org/10.1109/tnnls.2018.2854796.
Pełny tekst źródłaGu, Haoran, Yunni Xia, Hong Xie, Xiaoyu Shi i Mingsheng Shang. "Robust and efficient algorithms for conversational contextual bandit". Information Sciences 657 (luty 2024): 119993. http://dx.doi.org/10.1016/j.ins.2023.119993.
Pełny tekst źródłaNarita, Yusuke, Shota Yasui i Kohei Yata. "Efficient Counterfactual Learning from Bandit Feedback". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 4634–41. http://dx.doi.org/10.1609/aaai.v33i01.33014634.
Pełny tekst źródłaLi, Zhaoyu, i Qian Ai. "Managing Considerable Distributed Resources for Demand Response: A Resource Selection Strategy Based on Contextual Bandit". Electronics 12, nr 13 (23.06.2023): 2783. http://dx.doi.org/10.3390/electronics12132783.
Pełny tekst źródłaHuang, Wen, i Xintao Wu. "Robustly Improving Bandit Algorithms with Confounded and Selection Biased Offline Data: A Causal Approach". Proceedings of the AAAI Conference on Artificial Intelligence 38, nr 18 (24.03.2024): 20438–46. http://dx.doi.org/10.1609/aaai.v38i18.30027.
Pełny tekst źródłaSpieker, Helge, i Arnaud Gotlieb. "Adaptive metamorphic testing with contextual bandits". Journal of Systems and Software 165 (lipiec 2020): 110574. http://dx.doi.org/10.1016/j.jss.2020.110574.
Pełny tekst źródłaJagerman, Rolf, Ilya Markov i Maarten De Rijke. "Safe Exploration for Optimizing Contextual Bandits". ACM Transactions on Information Systems 38, nr 3 (26.06.2020): 1–23. http://dx.doi.org/10.1145/3385670.
Pełny tekst źródłaKakadiya, Ashutosh, Sriraam Natarajan i Balaraman Ravindran. "Relational Boosted Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 13 (18.05.2021): 12123–30. http://dx.doi.org/10.1609/aaai.v35i13.17439.
Pełny tekst źródłaSeifi, Farshad, i Seyed Taghi Akhavan Niaki. "Optimizing contextual bandit hyperparameters: A dynamic transfer learning-based framework". International Journal of Industrial Engineering Computations 15, nr 4 (2024): 951–64. http://dx.doi.org/10.5267/j.ijiec.2024.6.003.
Pełny tekst źródłaZhao, Yafei, i Long Yang. "Constrained contextual bandit algorithm for limited-budget recommendation system". Engineering Applications of Artificial Intelligence 128 (luty 2024): 107558. http://dx.doi.org/10.1016/j.engappai.2023.107558.
Pełny tekst źródłaYang, Jianyi, i Shaolei Ren. "Robust Bandit Learning with Imperfect Context". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 12 (18.05.2021): 10594–602. http://dx.doi.org/10.1609/aaai.v35i12.17267.
Pełny tekst źródłaLiu, Zizhuo. "Investigation of progress and application related to Multi-Armed Bandit algorithms". Applied and Computational Engineering 37, nr 1 (22.01.2024): 155–59. http://dx.doi.org/10.54254/2755-2721/37/20230496.
Pełny tekst źródłaSemenov, Alexander, Maciej Rysz, Gaurav Pandey i Guanglin Xu. "Diversity in news recommendations using contextual bandits". Expert Systems with Applications 195 (czerwiec 2022): 116478. http://dx.doi.org/10.1016/j.eswa.2021.116478.
Pełny tekst źródłaSui, Guoxin, i Yong Yu. "Bayesian Contextual Bandits for Hyper Parameter Optimization". IEEE Access 8 (2020): 42971–79. http://dx.doi.org/10.1109/access.2020.2977129.
Pełny tekst źródłaTekin, Cem, i Mihaela van der Schaar. "Distributed Online Learning via Cooperative Contextual Bandits". IEEE Transactions on Signal Processing 63, nr 14 (lipiec 2015): 3700–3714. http://dx.doi.org/10.1109/tsp.2015.2430837.
Pełny tekst źródłaQin, Yuzhen, Yingcong Li, Fabio Pasqualetti, Maryam Fazel i Samet Oymak. "Stochastic Contextual Bandits with Long Horizon Rewards". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 8 (26.06.2023): 9525–33. http://dx.doi.org/10.1609/aaai.v37i8.26140.
Pełny tekst źródłaXu, Xiao, Fang Dong, Yanghua Li, Shaojian He i Xin Li. "Contextual-Bandit Based Personalized Recommendation with Time-Varying User Interests". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 6518–25. http://dx.doi.org/10.1609/aaai.v34i04.6125.
Pełny tekst źródłaTekin, Cem, i Eralp Turgay. "Multi-objective Contextual Multi-armed Bandit With a Dominant Objective". IEEE Transactions on Signal Processing 66, nr 14 (15.07.2018): 3799–813. http://dx.doi.org/10.1109/tsp.2018.2841822.
Pełny tekst źródłaYoon, Gyugeun, i Joseph Y. J. Chow. "Contextual Bandit-Based Sequential Transit Route Design under Demand Uncertainty". Transportation Research Record: Journal of the Transportation Research Board 2674, nr 5 (maj 2020): 613–25. http://dx.doi.org/10.1177/0361198120917388.
Pełny tekst źródłaLi, Litao. "Exploring Multi-Armed Bandit algorithms: Performance analysis in dynamic environments". Applied and Computational Engineering 34, nr 1 (22.01.2024): 252–59. http://dx.doi.org/10.54254/2755-2721/34/20230338.
Pełny tekst źródłaZhu, Tan, Guannan Liang, Chunjiang Zhu, Haining Li i Jinbo Bi. "An Efficient Algorithm for Deep Stochastic Contextual Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 12 (18.05.2021): 11193–201. http://dx.doi.org/10.1609/aaai.v35i12.17335.
Pełny tekst źródłaMartín H., José Antonio, i Ana M. Vargas. "Linear Bayes policy for learning in contextual-bandits". Expert Systems with Applications 40, nr 18 (grudzień 2013): 7400–7406. http://dx.doi.org/10.1016/j.eswa.2013.07.041.
Pełny tekst źródłaRaghavan, Manish, Aleksandrs Slivkins, Jennifer Wortman Vaughan i Zhiwei Steven Wu. "Greedy Algorithm Almost Dominates in Smoothed Contextual Bandits". SIAM Journal on Computing 52, nr 2 (12.04.2023): 487–524. http://dx.doi.org/10.1137/19m1247115.
Pełny tekst źródłaAyala-Romero, Jose A., Andres Garcia-Saavedra i Xavier Costa-Perez. "Risk-Aware Continuous Control with Neural Contextual Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 38, nr 19 (24.03.2024): 20930–38. http://dx.doi.org/10.1609/aaai.v38i19.30083.
Pełny tekst źródłaPilani, Akshay, Kritagya Mathur, Himanshu Agrawal, Deeksha Chandola, Vinay Anand Tikkiwal i Arun Kumar. "Contextual Bandit Approach-based Recommendation System for Personalized Web-based Services". Applied Artificial Intelligence 35, nr 7 (6.04.2021): 489–504. http://dx.doi.org/10.1080/08839514.2021.1883855.
Pełny tekst źródłaLi, Xinbin, Jiajia Liu, Lei Yan, Song Han i Xinping Guan. "Relay Selection in Underwater Acoustic Cooperative Networks: A Contextual Bandit Approach". IEEE Communications Letters 21, nr 2 (luty 2017): 382–85. http://dx.doi.org/10.1109/lcomm.2016.2625300.
Pełny tekst źródłaGisselbrecht, Thibault, Sylvain Lamprier i Patrick Gallinari. "Dynamic Data Capture from Social Media Streams: A Contextual Bandit Approach". Proceedings of the International AAAI Conference on Web and Social Media 10, nr 1 (4.08.2021): 131–40. http://dx.doi.org/10.1609/icwsm.v10i1.14734.
Pełny tekst źródła