Gotowa bibliografia na temat „Ball-milling”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Ball-milling”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Ball-milling"
Qiu, Zhi Wen, Jin Yun Cheng, Jian Feng Zhou, Qin Qin He, Xiao Dong Ma, Zhi Wen Wang, Xin Chao Chen i in. "Effect of Ball Milling Methods on the Properties of Quartz Sand Powder Materials from the Yangtze River". Advanced Materials Research 804 (wrzesień 2013): 47–51. http://dx.doi.org/10.4028/www.scientific.net/amr.804.47.
Pełny tekst źródłaBolm, C., B. Rodríguez i T. Rantanen. "Ball-Milling Organocatalysis". Synfacts 2006, nr 12 (grudzień 2006): 1281. http://dx.doi.org/10.1055/s-2006-955561.
Pełny tekst źródłaMa, Bo Feng, Bin Tan, Wen Bo Zhao, Xin Liang, Fa Mei Hu, Guo Sheng Yang, Liang Liang You i in. "Preparing Superfine Quartz Sand Powder by Ball Milling Method". Advanced Materials Research 1058 (listopad 2014): 44–47. http://dx.doi.org/10.4028/www.scientific.net/amr.1058.44.
Pełny tekst źródłaRhee, Kyong Yop, Hyun Kab Cho i Jai Sung Hong. "An Investigation on the Application of Cryogenic Ball Milling to Ibuprofen Particle and Its Characteristics". Materials Science Forum 505-507 (styczeń 2006): 355–60. http://dx.doi.org/10.4028/www.scientific.net/msf.505-507.355.
Pełny tekst źródłaLiu, Yue, Jie Guang Song, W. L. Zhu, D. L. Zhang, H. B. Wen i R. Huang. "Effect of Ball Milling Technology on Properties of Refractory Waste". Key Engineering Materials 927 (29.07.2022): 143–48. http://dx.doi.org/10.4028/p-49gm95.
Pełny tekst źródłaZhang, Na, Yiqun Mao, Shuangshuang Wu i Wei Xu. "Effects of the Ball Milling Process on the Particle Size of Graphene Oxide and Its Application in Enhancing the Thermal Conductivity of Wood". Forests 13, nr 8 (19.08.2022): 1325. http://dx.doi.org/10.3390/f13081325.
Pełny tekst źródłaBor, Amgalan, Battsetseg Jargalsaikhan, Jehyun Lee i Heekyu Choi. "Effect of Different Milling Media for Surface Coating on the Copper Powder Using Two Kinds of Ball Mills with Discrete Element Method Simulation". Coatings 10, nr 9 (19.09.2020): 898. http://dx.doi.org/10.3390/coatings10090898.
Pełny tekst źródłaCamut, Julia, Ignacio Barber Rodriguez, Hasbuna Kamila, Aidan Cowley, Reinhard Sottong, Eckhard Mueller i Johannes de Boor. "Insight on the Interplay between Synthesis Conditions and Thermoelectric Properties of α-MgAgSb". Materials 12, nr 11 (7.06.2019): 1857. http://dx.doi.org/10.3390/ma12111857.
Pełny tekst źródłaRoyka, Azura, i Erwin Amiruddin. "PENENTUAN NILAI SUSEPTIBILITAS DAN UKURAN PARTIKEL MAGNETIK PASIR ALAM LOGAS KABUPATEN KUANTAN SINGINGI MENGGUNAKAN VARIASI UKURAN BALL MILLING". Komunikasi Fisika Indonesia 18, nr 1 (31.03.2021): 42. http://dx.doi.org/10.31258/jkfi.18.1.42-47.
Pełny tekst źródłaZhang, Changjun. "Shockwaves from ball milling". Nature Energy 8, nr 10 (20.10.2023): 1058. http://dx.doi.org/10.1038/s41560-023-01393-7.
Pełny tekst źródłaRozprawy doktorskie na temat "Ball-milling"
Chieng, Heng Liang Norman, i n/a. "Amorphous drug preparation using ball milling". University of Otago. School of Pharmacy, 2008. http://adt.otago.ac.nz./public/adt-NZDU20081209.162001.
Pełny tekst źródłaWagner, Meghan. "Investigating carbocations using high speed ball milling". University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1352402944.
Pełny tekst źródłaLazoğlu, İsmail. "Analysis of force system in ball-end milling". Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/16022.
Pełny tekst źródłaRail, Alexandre. "Model-based control of metal powder ball milling". Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=102157.
Pełny tekst źródłaBall mill size reduction theory is presented as a basis for process characterization. Next, process physics are described along with the measurability and controllability of the variables. Then, plant trials are performed to define system behavior and performance specifications of variables and sensors. After that, a sampler for metal powder is developed to automate the entire sieve analysis process.
A new ball mill model is created for open-circuit dry ball milling of metal powders. The process model is a combination of rules, equations and heuristics and is implemented using an agent based architecture that can deal with multiple data streams and a network of related sub-models of different sizes and operating time scales.
The model architecture is integrated using a programmable logic controller. Control and monitoring algorithms are developed in low-level PC language. A performance plant trial validated the control system and demonstrated that ball milling product specifications, namely size distribution and apparent density, are achievable and maintainable at a 99.7% confidence interval. This new technology will endow Domfer with a serious lead in metal powder manufacturing.
Key words. model-based control, ball milling, metal powder.
Waddell, Daniel C. "Environmentally friendly synthesis using high speed ball milling". University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1330024874.
Pełny tekst źródłaGhasdi, Manghootaee Mohammad. "PEROVSKITE GAS SENSOR. Prepared by High Energy Ball Milling". Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/29985/29985.pdf.
Pełny tekst źródłaThe aim of this project is to explore the possibility of exploitation of nanostructured mixed oxides obtained by HEBM technique in development of high efficient gas sensors in terms of performance and cost. LaFeO3 and LaCoO3 formulations were chosen as perovskite-based materials, based on their intrinsic sensing properties reported on the literature, to investigate the effect of synthesis parameters on their gas sensing performance. In the first step, synthesis parameters were optimized to obtain nanocrystalline LaCoO3 perovskite-oxide. A coating method was then developed in order to coat the sensing material in powder form on an electrically resistant substrate and to provide a sensing device. This coating method consisted of a simple wash-coating process where the nanocrystalline powder is put in suspension in an aqueous solution with an accurately adjusted pH and the substrate is dipped in until a continuous and homogeneous thick sensing layer is formed. The samples were then dried and conditioned and the sensing properties were evaluated basically by measuring electrical resistance behaviour of the device in different gas compositions. In order to compare the ball milling (BM) method with other synthesis methods, the same formulation was also obtained using sol-gel (SG) and solid-state reaction (SSR) methods. The effect of crystallite size on CO sensing performance of synthesized LaCoO3 was studied. Compared to the other methods, HEBM resulted in lowest crystallite size of 11 nm while the SG and SSR gave a crystallite size of 20 nm and 1 µm, respectively. While the specific surface area of all samples remained similar, the maximum response ratio was increased from 7% for SSR samples to 17% and 26% for SG and BM samples, respectively. In the second step, specific surface area (SSA) of milled materials was increased using a second milling process. The new synthesis process was called Activated Reactive Synthesis (ARS). The effect of surface area on gas sensing performance and oxygen mobility as well as oxygen desorption capacity of synthesized materials was investigated. Synthesized materials were characterized using XRD, TPD-O2 and BET. Gas sensing results revealed a positive effect of low crystallite size and high surface area on gas sensing performance of milled materials. Specific surface area of the BM sample was successfully increased from 4 m2/g to an optimum value of 66 m2/g by an ARS step. Improved BM material showed the highest response ratio of up to 75% for 100 ppm CO in dry air at 125°C, which is four and ten times higher than those obtained by sol-gel and solid-state reaction methods, respectively. The gas sensing performance of LaCoO3 samples with a crystallite size of 11 nm and a specific surface of 66 m2/g was set as a benchmark for further improvements. In the third step, the potential of ARS method in providing the doped formulations was explored by synthesizing La1-xCexCoO3 series doped with different amounts of cerium. The effect of cerium doping on perovskite structure and its gas sensing properties was then evaluated. Ce-doped formulations showed a saturation point at 10 at.% in the perovskite structure. The optimum CO sensing temperature for doped formulation was found to be 100°C compared to 130°C for pure perovskite. Among the Ce-doped formulations, La0.9Ce0.1CoO3 showed the best response ratio (240%) with respect to 100 ppm CO that was four times higher than the response ratio of pure LaCoO3. TPD-O2, TPD-CO and XPS were performed to find the relation between sensing performance and physical and chemical properties of synthesized samples. Further addition of Ce resulted in segregation of cerium oxide as a second phase (impurity) and deteriorated the sensing performance of the doped materials. Nanostructured LaFeO3 perovskite was also synthesized using ARS method. This formulation was chosen for its intrinsic hydrogen and CO sensing properties. The sensing properties of this formulation with respect to methane were improved by Pd doping. Pd oxide was impregnated on the surface of nanostructured and high surface of LaFeO3 to further enhance its methane sensing performance. Different amounts of palladium oxide were used to find the optimum level of doping. Doped formulations showed a good sensitivity to methane at very low temperature (<150°C) while pure LaFeO3 did definitely not show any sensing property with respect to methane at the same temperature range. LaFeO3 with 2 wt.% Pd with a crystallite size of 14 nm and a high specific surface area of 46 m2/g showed maximum response ratio of 600% with respect to 300 ppm CH4 in air. Methane storage capacity of doped formulation was evaluated to investigate the effect of doping element on adsorption capacity and its relation with the sensing performance of synthesized samples. No catalytic activity was observed for doped formulations.
Fabián, Martin, Maxym Myndyk, Silva Klebson L. Da, Armin Feldhoff, Dirk Menzel, Klaus-Dieter Becker i Vladimir Šepelák. "Structural properties of nanocrystalline olivine prepared by ball milling". Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-188155.
Pełny tekst źródłaFabián, Martin, Maxym Myndyk, Silva Klebson L. Da, Armin Feldhoff, Dirk Menzel, Klaus-Dieter Becker i Vladimir Šepelák. "Structural properties of nanocrystalline olivine prepared by ball milling". Diffusion fundamentals 12 (2010) 84, 2010. https://ul.qucosa.de/id/qucosa%3A13906.
Pełny tekst źródłaMankosa, Michael James. "Investigation of operating conditions in stirred ball milling of coal". Thesis, This resource online, 1986. http://scholar.lib.vt.edu/theses/available/etd-03122009-040831/.
Pełny tekst źródłaAcar, Cemil. "Investigation Of Particle Breakage Parameters In Locked-cycle Ball Milling". Phd thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615427/index.pdf.
Pełny tekst źródłaand (ii) to find the most accurate estimation method of breakage distribution functions among the three existing methods, namely, the &ldquo
zero-order production of fines&rdquo
method, the BII method, and the G-H method. The G-H method was found to be more appropriate for the current study. The locked-cycle grinding experiments revealed that the breakage rate function of coarse fractions increased with increasing proportion of fines in the mill hold-up. Breakage distribution functions were found to be environment-dependent and non-normalizable by size in one-size-fraction and locked cycle grinding experiments. It was concluded that the cumulative basis breakage rate function could sufficiently represent the breakage characteristics of the two studied materials in a wide range of operating conditions. Therefore, it would be more appropriate to evaluate the breakage characteristics of materials ground in ball mills by linearized form of the size-discretized batch grinding equation using single parameter instead of dealing with two parameters which may not be independent of each other.
Książki na temat "Ball-milling"
Stolle, Achim, i Brindaban Ranu, red. Ball Milling Towards Green Synthesis. Cambridge: Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/9781782621980.
Pełny tekst źródłaHigh-energy ball milling: Mechanochemical processing of nanopowders. Boca Raton, FL: CRC Press, 2010.
Znajdź pełny tekst źródłaSopicka-Lizer, Małgorzata. High-energy ball milling. Woodhead Publishing Limited, 2010. http://dx.doi.org/10.1533/9781845699444.
Pełny tekst źródłaSopicka-Lizer, Małgorzata. High-Energy Ball Milling: Mechanochemical Processing of Nanopowders. Woodhead Publishing, 2016.
Znajdź pełny tekst źródłaStolle, Achim, George Kraus i Brindaban Ranu. Ball Milling Towards Green Synthesis: Applications, Projects, Challenges. Royal Society of Chemistry, The, 2014.
Znajdź pełny tekst źródłaJuaristi, Eusebio, Giancarlo Cravotto, Tomislav Friscic, Weike Su i Brindaban Ranu. Ball Milling Towards Green Synthesis: Applications, Projects, Challenges. Royal Society of Chemistry, The, 2014.
Znajdź pełny tekst źródłaSopicka-Lizer, Malgorzata. High-Energy Ball Milling: Mechanochemical Processing of Nanopowders. Elsevier Science & Technology, 2010.
Znajdź pełny tekst źródłaStolle, Achim, George Kraus i Brindaban Ranu. Ball Milling Towards Green Synthesis: Applications, Projects, Challenges. Royal Society of Chemistry, The, 2014.
Znajdź pełny tekst źródłaMatej Baláž. Environmental Mechanochemistry: Recycling Waste into Materials Using High-Energy Ball Milling. Springer International Publishing AG, 2022.
Znajdź pełny tekst źródłaBaláž, Matej. Environmental Mechanochemistry: Recycling Waste into Materials Using High-Energy Ball Milling. Springer International Publishing AG, 2021.
Znajdź pełny tekst źródłaCzęści książek na temat "Ball-milling"
Gooch, Jan W. "Ball Milling". W Encyclopedic Dictionary of Polymers, 64. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_1023.
Pełny tekst źródłaHuot, Jacques. "Ball Milling". W SpringerBriefs in Applied Sciences and Technology, 7–10. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35107-0_3.
Pełny tekst źródłaPohshna, Chwadaka, Damodhara Rao Mailapalli i Tapas Laha. "Synthesis of Nanofertilizers by Planetary Ball Milling". W Sustainable Agriculture Reviews, 75–112. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33281-5_3.
Pełny tekst źródłaMitchell, Brian S. "Nanostructures from Reactive High-Energy Ball Milling". W Handbook of Mechanical Nanostructuring, 493–510. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527674947.ch21.
Pełny tekst źródłaPop, D. A., i George Arghir. "On Massive Powder Coating in Ball Milling". W Materials and Technologies, 99–102. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-460-x.99.
Pełny tekst źródłaMeyer, M., S. Gialanella, A. Maddalena i G. Principi. "Ball milling of Fe3Al-Si powder mixtures". W Hyperfine Interactions (C), 543–46. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0281-3_133.
Pełny tekst źródłaGołaszewski, Marcin, i Bartosz Powałka. "Geometric Model of Ball-End Micro Milling". W Lecture Notes in Networks and Systems, 121–31. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93377-7_11.
Pełny tekst źródłaVyboishchik, A. V. "Modelling of Cutting Forces in Ball-End Milling". W Proceedings of the 4th International Conference on Industrial Engineering, 1139–46. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95630-5_119.
Pełny tekst źródłaLiu, Z. G., Y. Xu, K. Tsuchiya i M. Umemoto. "Microstructure Evolution in Nanocrystal Formation During Ball Milling". W Ultrafine Grained Materials II, 105–12. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118804537.ch13.
Pełny tekst źródłaPan, Yu Bai, Zheng Ren Huang, Dong Liang Jiang, Léo Mazerolles, D. Michel, J. L. Pastol i Guillaume Wang. "High Energy Planetary Ball Milling of SiC Powders". W Composite Materials V, 7–14. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-451-0.7.
Pełny tekst źródłaStreszczenia konferencji na temat "Ball-milling"
HERNANDO, A., E. HERRERO, M. VÁZQUEZ, J. ALONSO, J. M. ROJO, A. GONZALEZ, M. VALLET-REGÍ i J. M. GONZALEZ CALBET. "GIANT DIAMAGNETISM INDUCED BY BALL MILLING". W Proceedings of the Fifth International Workshop on Non-Crystalline Solids. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814447225_0016.
Pełny tekst źródłaBoschetto, A., A. Ruggiero, F. Veniali, A. La Barbera i C. Colella. "Particle Tracking in Horizontal Ball Milling". W ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95682.
Pełny tekst źródłaRizlan, Muhamad Zulkhairi, i Othman Mamat. "Mechanical milling of tronoh silica sand nanoparticles using low speed ball milling process". W 2013 IEEE Regional Symposium on Micro and Nanoelectronics (RSM). IEEE, 2013. http://dx.doi.org/10.1109/rsm.2013.6706529.
Pełny tekst źródłaChaudhuri, S., i Sumit K. Roy. "Milling maps of nanocrystalline lead titanate ceramics synthesised by high energy ball milling". W 3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001365.
Pełny tekst źródłaFernandes da Silva, Fábio, Milton Polli i Marcio Avelar. "VIBRATIONS ANALYSIS IN THE BALL-END MILLING PROCESS". W 24th ABCM International Congress of Mechanical Engineering. ABCM, 2017. http://dx.doi.org/10.26678/abcm.cobem2017.cob17-0742.
Pełny tekst źródłaHalvorsen, Helge, i Michael Macdonald Arnskov. "Practical Aspects of In-situ Ball Seat Milling". W SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2011. http://dx.doi.org/10.2118/147674-ms.
Pełny tekst źródłaAhn, Jung Hwan, Daniel Song, Min Sik Woo, Dae Heung Cho, Sung Joo Hwang i Tae Hyun Sung. "Effect of ball size and ball milling time on piezoelectric properties of 0.69PZT-0.31PZNN". W 2014 Joint IEEE International Symposium on the Applications of Ferroelectrics, International Workshop on Acoustic Transduction Materials and Devices & Workshop on Piezoresponse Force Microscopy (ISAF/IWATMD/PFM). IEEE, 2014. http://dx.doi.org/10.1109/isaf.2014.6922957.
Pełny tekst źródłaAhn, Jung Hwan, Daniel Song, Min Sik Woo, Dae Heung Cho, Sung Joo Hwang i Tae Hyun Sung. "Effect of ball size and ball milling time on piezoelectric properties of 0.69PZT-0.31PZNN". W 2014 15th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2014. http://dx.doi.org/10.1109/icept.2014.6918708.
Pełny tekst źródłaRain, Ritika, Pooja Gangola, Sudha, P. B. Karandikar i Surbhi Sharma. "Effect of inclined ball milling on capacitance of supercapacitor". W 2018 2nd International Conference on Inventive Systems and Control (ICISC). IEEE, 2018. http://dx.doi.org/10.1109/icisc.2018.8398976.
Pełny tekst źródłaNasri, A., L. Sayari, M. Ben Said, W. Bouzid i O. Tsoumarev. "FE Thermal Modelling Of Machining With Ball End Milling". W MATERIALS PROCESSING AND DESIGN; Modeling, Simulation and Applications; NUMIFORM '07; Proceedings of the 9th International Conference on Numerical Methods in Industrial Forming Processes. AIP, 2007. http://dx.doi.org/10.1063/1.2740965.
Pełny tekst źródłaRaporty organizacyjne na temat "Ball-milling"
Clausen, Jay, Samuel Beal, Thomas Georgian, Kevin Gardner, Thomas Douglas i Ashley Mossell. Effects of milling on the metals analysis of soil samples containing metallic residues. Engineer Research and Development Center (U.S.), lipiec 2021. http://dx.doi.org/10.21079/11681/41241.
Pełny tekst źródłaMulford, Roberta Nancy. Comparison of particle sizes between 238PuO2 before aqueous processing, after aqueous processing, and after ball milling. Office of Scientific and Technical Information (OSTI), luty 2017. http://dx.doi.org/10.2172/1342880.
Pełny tekst źródła