Gotowa bibliografia na temat „Bacterial Small Heat Shock Protein”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Bacterial Small Heat Shock Protein”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Bacterial Small Heat Shock Protein"
Bepperling, A., F. Alte, T. Kriehuber, N. Braun, S. Weinkauf, M. Groll, M. Haslbeck i J. Buchner. "Alternative bacterial two-component small heat shock protein systems". Proceedings of the National Academy of Sciences 109, nr 50 (26.11.2012): 20407–12. http://dx.doi.org/10.1073/pnas.1209565109.
Pełny tekst źródłaVentura, Marco, Carlos Canchaya, Ziding Zhang, Gerald F. Fitzgerald i Douwe van Sinderen. "Molecular Characterization of hsp20, Encoding a Small Heat Shock Protein of Bifidobacterium breve UCC2003". Applied and Environmental Microbiology 73, nr 14 (18.05.2007): 4695–703. http://dx.doi.org/10.1128/aem.02496-06.
Pełny tekst źródłaWhiston, Emily A., Norito Sugi, Merideth C. Kamradt, Coralynn Sack, Susan R. Heimer, Michael Engelbert, Eric F. Wawrousek, Michael S. Gilmore, Bruce R. Ksander i Meredith S. Gregory. "αB-Crystallin Protects Retinal Tissue during Staphylococcus aureus- Induced Endophthalmitis". Infection and Immunity 76, nr 4 (28.01.2008): 1781–90. http://dx.doi.org/10.1128/iai.01285-07.
Pełny tekst źródłaLarge, Andrew T., Martin D. Goldberg i Peter A. Lund. "Chaperones and protein folding in the archaea". Biochemical Society Transactions 37, nr 1 (20.01.2009): 46–51. http://dx.doi.org/10.1042/bst0370046.
Pełny tekst źródłaYin, Huaqun, Min Tang, Zhijun Zhou, Xian Fu, Li Shen, Yili Liang, Qian Li, Hongwei Liu i Xueduan Liu. "Distinctive heat-shock response of bioleaching microorganismAcidithiobacillus ferrooxidansobserved using genome-wide microarray". Canadian Journal of Microbiology 58, nr 5 (maj 2012): 628–36. http://dx.doi.org/10.1139/w2012-023.
Pełny tekst źródłaZhang, Bo, Sean P. Leonard, Yiyuan Li i Nancy A. Moran. "Obligate bacterial endosymbionts limit thermal tolerance of insect host species". Proceedings of the National Academy of Sciences 116, nr 49 (18.11.2019): 24712–18. http://dx.doi.org/10.1073/pnas.1915307116.
Pełny tekst źródłaAvelange-Macherel, Marie-Hélène, Aurélia Rolland, Marie-Pierre Hinault, Dimitri Tolleter i David Macherel. "The Mitochondrial Small Heat Shock Protein HSP22 from Pea is a Thermosoluble Chaperone Prone to Co-Precipitate with Unfolding Client Proteins". International Journal of Molecular Sciences 21, nr 1 (21.12.2019): 97. http://dx.doi.org/10.3390/ijms21010097.
Pełny tekst źródłaLaksanalamai, Pongpan, Dennis L. Maeder i Frank T. Robb. "Regulation and Mechanism of Action of the Small Heat Shock Protein from the Hyperthermophilic ArchaeonPyrococcus furiosus". Journal of Bacteriology 183, nr 17 (1.09.2001): 5198–202. http://dx.doi.org/10.1128/jb.183.17.5198-5202.2001.
Pełny tekst źródłaLupoli, Tania J., Allison Fay, Carolina Adura, Michael S. Glickman i Carl F. Nathan. "Reconstitution of aMycobacterium tuberculosisproteostasis network highlights essential cofactor interactions with chaperone DnaK". Proceedings of the National Academy of Sciences 113, nr 49 (21.11.2016): E7947—E7956. http://dx.doi.org/10.1073/pnas.1617644113.
Pełny tekst źródłaOliver, Cristian, Patricio Sánchez, Karla Valenzuela, Mauricio Hernández, Juan Pablo Pontigo, Maria C. Rauch, Rafael A. Garduño, Ruben Avendaño-Herrera i Alejandro J. Yáñez. "Subcellular Location of Piscirickettsia salmonis Heat Shock Protein 60 (Hsp60) Chaperone by Using Immunogold Labeling and Proteomic Analysis". Microorganisms 8, nr 1 (15.01.2020): 117. http://dx.doi.org/10.3390/microorganisms8010117.
Pełny tekst źródłaRozprawy doktorskie na temat "Bacterial Small Heat Shock Protein"
Studer, Sonja. "Chaperone activity and oligomerization of bacterial small heat shock proteins /". [S.l.] : [s.n.], 2002. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=14550.
Pełny tekst źródłaCollier, Miranda. "Small heat shock protein interactions with in vivo partners". Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:24cf8041-c82d-4bc4-87a7-0ae7e38f1879.
Pełny tekst źródłaFranzmann, Titus Marcellus. "Chaperone mechanism of the small heat shock protein Hsp26". kostenfrei, 2008. http://mediatum2.ub.tum.de/doc/652224/652224.pdf.
Pełny tekst źródłaSund, Derrick T. "Replica Exchange Molecular Dynamics of a Small Heat Shock Protein". Thesis, The University of Arizona, 2011. http://hdl.handle.net/10150/144990.
Pełny tekst źródłaMorris, Amie Michelle. "Structure and function of the mammalian small heat shock protein Hsp25". Access electronically Access electronically, 2007. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20080605.104334/index.html.
Pełny tekst źródłaCarson, Kenneth Harris. "Study and characterization of a novel small heat shock protein from Babesia". [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1813.
Pełny tekst źródładi, Bard Barbara Lelj Garolla. "Self-association and chaperon activity of the small heat shock protein 27". Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/31382.
Pełny tekst źródłaMedicine, Faculty of
Biochemistry and Molecular Biology, Department of
Graduate
Dabbaghizadeh, Afrooz. "Structure and function of mitochondrial small heat shock protein 22 in Drosophila melanogaster". Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/34491.
Pełny tekst źródłaThe small heat shock proteins (sHsps) were first discovered in Drosophila. Members of this family are molecular chaperones and are present in most eukaryotic and prokaryotic. Although, they are induced in response to most of the stressors including heat shock, they are also expressed in absence of stress. SHsps for mdynamic structures that assemble into oligomers which are essential during stress conditions by preventing aggregation of denatured proteins and promoting their folding by ATP dependent molecular chaperones. Drosophila melanogaster genome encodes 12 sHsps, that have developmental expression patterns, diverse intracellular localizations and distinct substrate specificities. DmHsp22 is up to now the only sHsp localized in mitochondria before and after heat shock. It is preferentially regulated during ageing and in response to heat and oxidative stresses. Over-expression of DmHsp22 increases lifespan and resistance to stress and its down-regulation is detrimental. It is an efficient chaperone and could be involved in the mitochondrial unfolding protein response (UPRMT). However, the exact mechanism of its action is poorly understood. Structurally, DmHsp22 forms one population of oligomers similar to the many metazoan sHsps but DmHsp27. Sequence alignment of DmHsp22 with sHsps in Drosophilaand other organisms at the alpha crystalline domain (ACD) region demonstrated the presence of three highly conserved arginine residues in this domain. Strong conservation of these residues suggest their possible involvement in structure and function of DmHsp22. Substitution of highly conserved arginine residues in mammalian sHsps is associated with some pathogenesis and triggers protein conformational changes as well as intracellular protein aggregation. Mutation of arginine to glycine at three highly conserved residues of ACD in DmHsp22 (R105, R109, R110) results in one oligomeric population as well which in the case of R110G disrupts the structure and causes formation of smaller oligomers. Although DmHsp22 as well as mutants have been characterized as effective in vitro chaperones, the exact mechanism(s) of action in mitochondria and information about protective behavior requires defining of in vivoprotein interacting network. We have used immunoaffinity conjugation (IAC) technique to recover 60 proteins that specifically interact with DmHsp22 in vivo during normal and heat treatment using cell extract of mammalian cells expressing DmHsp22. The IAC performed on mitochondrial fraction identified 39 proteins that specifically interact with DmHsp22. Combination of IAC with mass spectroscopy analysis of mitochondria of HeLa cells transfected with DmHsp22 resulted in identification of DmHsp22-binding partners under normal andunder heat shock conditions. Interaction between DmHsp22 and two other mitochondrial chaperones was validated by immunoblotting. Our approach showed that HeLa cells expressing DmHsp22 increase maximal mitochondrial oxygen consumption and ATP contents which provides a new mechanistic role for DmHsp22 in mitochondria. Further more, exogenous luciferase activity slightly increased in HeLa cells expressing DmHsp22 after the enzyme activity reduced as a result of exposure to heat. In summary, this project has characterized the oligomeric structure of DmHsp22 and a number of mutants inthe alpha crystalline domain while providing a potential mechanistic role in mitochondrial homeostasis. Determining mitochondrial network of DmHsp22 suggest its importance in this organelle not only as a molecular chaperone but also as a protein involved in several significant cellular functions.
Friedrich, Kenneth Lane. "Dynamic behavior of small heat shock protein subunits and their interactions with substrates". Diss., The University of Arizona, 2003. http://hdl.handle.net/10150/280410.
Pełny tekst źródłaMuchowski, Paul J. "Structural and functional characterization of human alphaB-crystallin, a small heat-shock protein and molecular chaperone /". Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/5676.
Pełny tekst źródłaKsiążki na temat "Bacterial Small Heat Shock Protein"
Ramage, Judith Margaret. Immunological memory: T cell responses to bacterial heat shock protein 60. Birmingham: University of Birmingham, 1997.
Znajdź pełny tekst źródłaKegel, Kimberly Beth. Small heat shock protein αB-crystallin: Functional analysis during hypertonic stress. 1997.
Znajdź pełny tekst źródłaCzęści książek na temat "Bacterial Small Heat Shock Protein"
Chang, Zengyi. "Understanding What Small Heat Shock Proteins Do for Bacterial Cells". W Heat Shock Proteins, 511–25. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16077-1_22.
Pełny tekst źródłaHaslbeck, Martin. "Small Heat Shock Proteins in Bacteria". W Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria, 747–53. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119004813.ch71.
Pełny tekst źródłaBrötz-Oesterhelt, Heike, i Peter Sass. "Bacterial Cell Stress Protein ClpP: A Novel Antibiotic Target". W Heat Shock Proteins, 375–85. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6787-4_24.
Pełny tekst źródłaVoellmy, R., Y. Luo, R. Mestril, J. Amin i J. Ananthan. "Mechanisms of Regulation of Small Heat Shock Protein Genes in Drosophila". W Heat Shock, 35–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76679-4_4.
Pełny tekst źródłaBoelens, Wilbert C. "Role of Small Heat Shock Protein HspB5 in Cancer". W Heat Shock Proteins, 301–14. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16077-1_12.
Pełny tekst źródłaBarth, Holger. "Role of Peptidyl-Prolyl cis/trans Isomerases in Cellular Uptake of Bacterial Protein Toxins". W Heat Shock Proteins, 251–65. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6787-4_16.
Pełny tekst źródłaTörök, Zsolt, Ana-Maria Pilbat, Imre Gombos, Enikö Hocsák, Balázs Sümegi, Ibolya Horváth i László Vígh. "Evidence on Cholesterol-Controlled Lipid Raft Interaction of the Small Heat Shock Protein HSPB11". W Heat Shock Proteins, 75–85. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4740-1_5.
Pełny tekst źródłaHärndahl, Ulrika, Niklas Gustavsson, Roberta Buffoni, Janet F. Bornman, Carin Jarl-Sunesson i Cecilia Sundby. "The Chloroplast Small Heat Shock Protein in Transgenic Arabidopsis Thaliana". W Photosynthesis: Mechanisms and Effects, 2461–64. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-3953-3_576.
Pełny tekst źródłaNorris, Carol E., i Lawrence E. Hightower. "Discovery of Two Distinct Small Heat Shock Protein (HSP) Families in the Desert Fish Poeciliopsis". W Small Stress Proteins, 19–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56348-5_2.
Pełny tekst źródłaOsteryoung, Katherine W., Brian Pipes, Nadja Wehmeyer i Elizabeth Vierling. "Studies of a Chloroplast-Localized Small Heat Shock Protein in Arabidopsis". W Biochemical and Cellular Mechanisms of Stress Tolerance in Plants, 97–113. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79133-8_5.
Pełny tekst źródłaStreszczenia konferencji na temat "Bacterial Small Heat Shock Protein"
Doseff, AI, OH Voss i ME Gonzalez-Mejia. "The Small Heat Shock Protein 27 Regulates Monocyte/Macrophage Survival and Differentiation." W American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a1354.
Pełny tekst źródłaKwon, Jin-Sun, An-Na Moon, Joon-Tae Park, Soo-Jung Hong, Jin-Ah Jeong, Sung-Wook Kwon, Myong-Jae Lee i in. "Abstract 2768: IDH1057, A novel, synthetic, small molecule inhibitor of heat shock protein 90(Hsp90)". W Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-2768.
Pełny tekst źródłaBalaburski, Gregor M., Julie Leu, Seth A. Hayik, Mark Andrake, Roland Dunbrack, Donna George i Maureen E. Murphy. "Abstract 3771: Identification of novel small molecule inhibitors of the inducible heat shock protein Hsp70". W Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-3771.
Pełny tekst źródłaHendrix, A., D. Maynard, P. Pauwels, G. Braems, H. Denys, R. Van den Broecke, S. Van Belle i in. "The Secretory Small GTPase Rab27B Regulates Invasive Tumor Growth and Metastasis through Extracellular Heat Shock Protein 90α." W Abstracts: Thirty-Second Annual CTRC‐AACR San Antonio Breast Cancer Symposium‐‐ Dec 10‐13, 2009; San Antonio, TX. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/0008-5472.sabcs-09-6144.
Pełny tekst źródłaChen, Hongpeng, Xiaofeng Tan i Fangming Hu. "Cloning, Bioinformatics Analysis and Functional Identification of a Novel Small Heat Shock Protein Gene from Camellia oleifera Seed". W 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2009. http://dx.doi.org/10.1109/icbbe.2009.5162514.
Pełny tekst źródłaTaldone, Tony, Pallav D. Patel, Yanlong Kang, Anna Rodina, Tanaji T. Talele i Gabriela Chiosis. "Abstract 3895: Rational design of small molecule inhibitors that bind to an allosteric pocket on human heat shock protein 70 (Hsp70)". W Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-3895.
Pełny tekst źródłaDong, H., X. Wan, J. Zhang, C. Ye, W. Zhong i S. Cai. "Targeting Extracellular Heat Shock Protein 90α to Overcome Resistance to Gefitinib in Non Small Cell Lung Cancer via Epithelial to Mesenchymal Transition". W American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a3963.
Pełny tekst źródłaKim, Kyeong Kyu, Joohyun Lee, Truc Kim i Bum Han Ryu. "High resolution cryo-EM structure of the <em>Methanocaldococcus jannaschii </em>small-heat shock protein". W The 3rd International Online Conference on Crystals. Basel, Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/iocc_2022-12141.
Pełny tekst źródłaKim, Kyeong Kyu, Joohyun Lee, Truc Kim i Bum Han Ryu. "High resolution cryo-EM structure of the <em>Methanocaldococcus jannaschii </em>small-heat shock protein". W The 3rd International Online Conference on Crystals. Basel, Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/iocc_2022-12141.
Pełny tekst źródłaLee, SunHwa, Soyeon Kim, Tae Min Kim, Dong-Wan Kim i Dae Seog Heo. "Abstract 3272: Differential sensitivities to heat shock protein 90(HSP90) inhibitors in anaplastic lymphoma kinase(ALK)-positive non-small cell ling cancer(NSCLC) cells." W Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-3272.
Pełny tekst źródłaRaporty organizacyjne na temat "Bacterial Small Heat Shock Protein"
Hiremath, Shiv, Kirsten Lehtoma i Gopi K. Podila. Identification of a small heat-shock protein associated with a ras-mediated signaling pathway in ectomycorrhizal symbiosis. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station, 2009. http://dx.doi.org/10.2737/nrs-rp-7.
Pełny tekst źródła