Gotowa bibliografia na temat „Backstepping methods in control design”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Backstepping methods in control design”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Backstepping methods in control design"
Han, Seongik. "Grey Wolf and Weighted Whale Algorithm Optimized IT2 Fuzzy Sliding Mode Backstepping Control with Fractional-Order Command Filter for a Nonlinear Dynamic System". Applied Sciences 11, nr 2 (6.01.2021): 489. http://dx.doi.org/10.3390/app11020489.
Pełny tekst źródłaLiu, Jinglong, Jing Wen, Xiaoxiong Liu i Qizhi He. "A Modified Backstepping Control and Dynamic Control Allocation Method for Command Tracking". Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 36, nr 1 (luty 2018): 117–23. http://dx.doi.org/10.1051/jnwpu/20183610117.
Pełny tekst źródłaKolsi-Gdoura, E., M. Feki i N. Derbel. "Observer Based Robust Position Control of a Hydraulic Servo System Using Variable Structure Control". Mathematical Problems in Engineering 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/724795.
Pełny tekst źródłaBarros, João Dionísio Simões, Luis Rocha i J. Fernando Silva. "Backstepping Control of NPC Multilevel Converter Interfacing AC and DC Microgrids". Energies 16, nr 14 (20.07.2023): 5515. http://dx.doi.org/10.3390/en16145515.
Pełny tekst źródłaIsmail, S., A. A. Pashilkar, R. Ayyagari i N. Sundararajan. "Diagonally dominant backstepping autopilot for aircraft with unknown actuator failures and severe winds". Aeronautical Journal 118, nr 1207 (wrzesień 2014): 1009–38. http://dx.doi.org/10.1017/s0001924000009726.
Pełny tekst źródłaNguyen, Vi H., i Thanh T. Tran. "A Novel Hybrid Robust Control Design Method for F-16 Aircraft Longitudinal Dynamics". Mathematical Problems in Engineering 2020 (22.09.2020): 1–10. http://dx.doi.org/10.1155/2020/5281904.
Pełny tekst źródłaZhang, Chao, Xing Wang, Zhengfeng Ming i Zhuang Cai. "Enhanced Nonlinear Robust Control for TCSC in Power System". Mathematical Problems in Engineering 2018 (2018): 1–11. http://dx.doi.org/10.1155/2018/1416059.
Pełny tekst źródłaRodríguez-Abreo, Omar, Juan Manuel Garcia-Guendulain, Rodrigo Hernández-Alvarado, Alejandro Flores Rangel i Carlos Fuentes-Silva. "Genetic Algorithm-Based Tuning of Backstepping Controller for a Quadrotor-Type Unmanned Aerial Vehicle". Electronics 9, nr 10 (21.10.2020): 1735. http://dx.doi.org/10.3390/electronics9101735.
Pełny tekst źródłaAli, Sadia, Alvaro Prado i Mahmood Pervaiz. "Hybrid Backstepping-Super Twisting Algorithm for Robust Speed Control of a Three-Phase Induction Motor". Electronics 12, nr 3 (29.01.2023): 681. http://dx.doi.org/10.3390/electronics12030681.
Pełny tekst źródłaZhang, Hua. "Neural Network Command Filtered Control of Fractional-Order Chaotic Systems". Computational Intelligence and Neuroscience 2021 (21.10.2021): 1–15. http://dx.doi.org/10.1155/2021/8962251.
Pełny tekst źródłaRozprawy doktorskie na temat "Backstepping methods in control design"
Shekar, Sadahalli Arjun. "ADAPTIVE CONTROL DESIGN FOR QUADROTORS". OpenSIUC, 2017. https://opensiuc.lib.siu.edu/dissertations/1472.
Pełny tekst źródłaDahlgren, Johan. "Robust nonlinear control design for a missile using backstepping". Thesis, Linköping University, Department of Electrical Engineering, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1574.
Pełny tekst źródłaThis thesis has been performed at SAAB Bofors Dynamics. The purpose was to derive a robust control design for a nonlinear missile using backstepping. A particularly interesting matter was to see how different design choices affect the robustness. Backstepping is a relatively new design method for nonlinear systems which leads to globally stabilizing control laws. By making wise decisions in the design the resulting closed loop can receive significant robustness. The method also makes it possible to benefit from naturally stabilizing aerodynamic forces and momentums. It is based on Lyapunov theory and the control laws and a Lyapunov function are derived simultaneously. This Lyapunov function is used to guarantee stability. In this thesis the control laws for the missile are first derived by using backstepping. The missile dynamics are described with aerodynamic coeffcients with corresponding uncertainties. The robustness of the design w.r.t. the aerodynamic uncertainties is then studied further in detail. One way to analyze how the stability is affected by the errors in the coeffcients is presented. To improve the robustness and remove static errors, dynamics are introduced in the control laws by adding an integrator. One conclusion that has been reached is that it is hard to immediately determine how a certain design choice affects the robustness. Instead it is at the point when algebraic expressions for the closed loop system have been obtained, that it is possible to analyze the affects of a certain design choice. The designed control laws are evaluated by simulations which shows satisfactory results.
Henriquez, Acacio Alejandro Morales. "Flight control design for a flexible conceptual aircraft using backstepping technique". Instituto Tecnológico de Aeronáutica, 2011. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2170.
Pełny tekst źródłaMahmoud, Nawrous Ibrahim. "A Backstepping Design of a Control System for a Magnetic Levitation System". Thesis, Linköping University, Department of Electrical Engineering, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1960.
Pełny tekst źródłaThe subject of this thesis is the design of a control law for a magnetic levitation system, which in this case is the system 33-210. The method used is backstepping technique and specifically adaptive observer backstepping due to parameter uncertainties and lack of access to all the states of the system. The second state of the system, the speed of the steel ball, was estimated by a reduced order observer. The model used gave us the opportunity to estimate a parameter which in the literature is denoted virtual control coefficient. Backstepping method gives us a rather straight forward way to design the controlling unit for a system with these properties. Stabilization of the closed-loop system is achieved by incorporating a Lypapunov function, which were chose a quadratic one in this thesis. If thederivative of this function is rendered negative definite by the control law, then we achieve stability. The results of the design were evaluated in simulations and real-time measurements by testing the tracking performance of the system. The simulation results were very promising and the validations in real-time were satisfying. Note that this has been done in previous studies; the new aspect here is the limitation of the voltage input. The real-time results showed that the parameter estimation converges only locally.
Kroeger, Kenneth Edward. "Design and Evaluation of a Fixed-Pitch Multirotor UAV with a Nonlinear Control Strategy". Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/23109.
Pełny tekst źródłaThe design of a multirotor UAV system with a flight control scheme, communication architecture and hardware, electrical architecture and hardware, and mechanical design is presented. An Extended Kalman Filter (EKF) strategy is implemented aboard a developed Inertial Measurement Unit (IMU) to estimate vehicle state. Experiments then validated the estimates from the EKF through a comparative approach between the developed unit and a commercial unit. A nonlinear flight control system is implemented based on an Integral-Backstepping control strategy. The flight control strategy was then fully simulated and exhaustively tested under a variety of external disturbances and initial conditions from a fully dynamic modeled environment. Parameters about the vehicle were experimentally determined to increase the accuracy of the model which would increase the chances of successful flight operations.
Flight demonstrations were conducted to evaluate the abilities and performance of the control system, along with testing the interface abilities and reliability between a universal ground control station (UGCS) and the aircraft. Lastly, the model was revisited with the input data from the flight control experiment and the output captured was evaluated against the output of the model system to evaluate effectiveness, reliability, and accuracy of the model. The results of the comparison showed that the computer simulation was accurate in predicting attitude and altitude of the vehicle to that of the realized system.
Master of Science
Isaksen, Trond Willi. "Discrete-Time Backstepping Design Applied to Position Tracking Control of an Electro-Pneumatic Clutch Actuator". Thesis, Norwegian University of Science and Technology, Department of Engineering Cybernetics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-8743.
Pełny tekst źródłaThis thesis investigates different methods of backstepping controller design for an electro-pneumatic clutch actuator used in heavy duty trucks. The first part of the thesis is a literature study, where the subject is control of nonlinear-sampled data systems in general. Sampled-data systems contain a continuous-time plant and a digitally implemented controller, which in general make them harder to analyze and control than systems that operate purely in the continuous-time or discrete-time domain. The available theory of nonlinear sampled-data control systems is scarce, but three different methods are described in this thesis; emulation design, direct discrete-time design, and sampled-data design. The electro-pneumatic clutch actuator is controlled using a continuous-time backstepping controller implemented digitally. This is essentially the procedure of emulation design and is the common, if not only, method used in practical engineering tasks so far. However, redesign of the continuous-time controller using the direct discrete-time method shows great potential of improving performance and robustness of sampled-data systems. Direct discrete-time design is based on an approximate discrete-time model of the plant, giving the controller a structure that accounts for the sampling of the hybrid system. Potentially, one can utilize slower sampling in the system by implementing a discrete-time controller into the digial computer instead of a continuous-time one. Examples and case studies that prove the improvement one can achieve by chosing the direct discrete-time design is included in the first part of the thesis. Both a third- and fifth-order model of the electro-pneumatic clutch actuator are presented, and used as a basis for continuous- and discrete-time state-feedback backstepping controllers. These controllers are simulated with different sampling intervals to show their performance under different circumstances. The continuous-time controllers prove good reference trajectory tracking of the pure continuous-time system, while the performance of the sampled-data systems descends as higher sampling intervals are used. And, as opposed to the mentioned examples and case studies, the controller designed when taking the sampling into account shows no sign to outperform the controller that was designed without considering the sampling, at least not for the relative fast sampling the clutch actuator operates with.
Riccardo, Zanella Riccardo. "Decoupled Controllers for Mobile Manipulation with Aerial Robots : Design, Implementation and Test". Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-187649.
Pełny tekst źródłaAkyürek, Emre. "Remote-controlled ambidextrous robot hand actuated by pneumatic muscles : from feasibility study to design and control algorithms". Thesis, Brunel University, 2015. http://bura.brunel.ac.uk/handle/2438/11671.
Pełny tekst źródłaBeren, Eric B. "Methods for optimization based fixed-order control design /". Online version, 1997. http://bibpurl.oclc.org/web/29659.
Pełny tekst źródłaGrace, A. C. W. "Computer-aided control system design using optimization methods". Thesis, Bangor University, 1989. https://research.bangor.ac.uk/portal/en/theses/computeraided-control-system-design-using-optimization-methods(077b2955-3ca3-4c71-99d8-003098f9c378).html.
Pełny tekst źródłaKsiążki na temat "Backstepping methods in control design"
Rudra, Shubhobrata, Ranjit Kumar Barai i Madhubanti Maitra. Block Backstepping Design of Nonlinear State Feedback Control Law for Underactuated Mechanical Systems. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-1956-2.
Pełny tekst źródłaPetersen, Ian R., Valery A. Ugrinovskii i Andrey V. Savkin. Robust Control Design Using H-∞ Methods. London: Springer London, 2000. http://dx.doi.org/10.1007/978-1-4471-0447-6.
Pełny tekst źródłaGrimble, Michael J., i Vladimir Kučera, red. Polynomial Methods for Control Systems Design. London: Springer London, 1996. http://dx.doi.org/10.1007/978-1-4471-1027-9.
Pełny tekst źródłaJ, Grimbke Michael, i Kučera Vladimír 1943-, red. Polynomial methods for control systems design. London: Springer, 1996.
Znajdź pełny tekst źródłaM, Gupta Madan, i Chen C. H. 1937-, red. Adaptive methods for control system design. New York: Institute of Electrical and Electronics Engineers, 1986.
Znajdź pełny tekst źródłaFacility, Dryden Flight Research, red. Model reduction methods for control design. Edwards, Calif: National Aeronautics and Space Administration, Ames Research Center, Dryden Flight Research Facility, 1988.
Znajdź pełny tekst źródłaBorggaard, Jeff, John Burns, Eugene Cliff i Scott Schreck, red. Computational Methods for Optimal Design and Control. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-1780-0.
Pełny tekst źródła1948-, Johnson Michael A., Moradi Mohammad H. 1967- i Crowe J, red. PID control: New identification and design methods. New York: Springer, 2005.
Znajdź pełny tekst źródłaModern control systems: A manual of design methods. Englewood Cliffs, NJ: Prentice-Hall International, 1986.
Znajdź pełny tekst źródłaKokotović, Petar V. Singular perturbation methods in control: Analysis and design. London: Academic Press, 1986.
Znajdź pełny tekst źródłaCzęści książek na temat "Backstepping methods in control design"
Wang, Lijun, Jiaxuan Yan, Tianyu Cao i Ningxi Liu. "Manipulator Control Law Design Based on Backstepping and ADRC Methods". W Lecture Notes in Electrical Engineering, 261–69. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8450-3_28.
Pełny tekst źródłaKocamaz, Uğur Erkin, Yilmaz Uyaroğlu i Sundarapandian Vaidyanathan. "Control of Shimizu–Morioka Chaotic System with Passive Control, Sliding Mode Control and Backstepping Design Methods: A Comparative Analysis". W Advances and Applications in Chaotic Systems, 409–25. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30279-9_17.
Pełny tekst źródłaWei, Yang, Haojun Xu, Yuan Xue, Zhe Li i Hongfeng Tian. "Flight Path Angle Controller Design Based on Adaptive Backstepping Terminal Sliding Mode Control Method". W Lecture Notes in Electrical Engineering, 2466–79. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3305-7_197.
Pełny tekst źródłaFreeman, Randy A., i Petar Kokotović. "Robust Backstepping". W Robust Nonlinear Control Design, 101–36. Boston, MA: Birkhäuser Boston, 2008. http://dx.doi.org/10.1007/978-0-8176-4759-9_5.
Pełny tekst źródłaStauter, Peter, Hubert Gattringer, Wolfgang Höbart i Hartmut Bremer. "Passivity Based Backstepping Control of an Elastic Robot". W ROMANSY 18 Robot Design, Dynamics and Control, 315–22. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-7091-0277-0_37.
Pełny tekst źródłaMackenroth, Uwe. "Classical Design Methods". W Robust Control Systems, 63–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09775-5_4.
Pełny tekst źródłaRamos, Germán A., Ramon Costa-Castelló i Josep M. Olm. "Design Methods". W Digital Repetitive Control under Varying Frequency Conditions, 27–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37778-5_4.
Pełny tekst źródłaRudra, Shubhobrata, Ranjit Kumar Barai i Madhubanti Maitra. "Block Backstepping Control of the Underactuated Mechanical Systems". W Block Backstepping Design of Nonlinear State Feedback Control Law for Underactuated Mechanical Systems, 31–52. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1956-2_3.
Pełny tekst źródłaVaidyanathan, Sundarapandian, Babatunde A. Idowu i Ahmad Taher Azar. "Backstepping Controller Design for the Global Chaos Synchronization of Sprott’s Jerk Systems". W Chaos Modeling and Control Systems Design, 39–58. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13132-0_3.
Pełny tekst źródłaAmato, Francesco, Massimiliano Mattei, Stefano Scala i Leopoldo Verde. "Design via LQ methods". W Robust Flight Control, 444–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0113872.
Pełny tekst źródłaStreszczenia konferencji na temat "Backstepping methods in control design"
Naseri, E., A. Ranjbar i S. H. HosseinNia. "Backstepping Control of Fractional-Order Chen System". W ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86950.
Pełny tekst źródłaPeng Wu i Ming Yang. "Design of missile attitude controller based on backstepping method". W 2008 7th World Congress on Intelligent Control and Automation. IEEE, 2008. http://dx.doi.org/10.1109/wcica.2008.4593579.
Pełny tekst źródłaWu, Zhigang, i Yangmin Li. "Design of Control Strategy for a Novel Compliant Flexure-Based Microgripper With Two Jaws". W ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46869.
Pełny tekst źródłaHe, Jin-bao, Guo-jun Li i Fang-xiang Cao. "Dynamic Terminal Sliding Mode Control Method Based on Backstepping Design". W 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization (ICSEM). IEEE, 2010. http://dx.doi.org/10.1109/icsem.2010.18.
Pełny tekst źródłaZhao, Xinhua, Xue Wang, Litao Jing i Kaiyan Niu. "Backstepping Control Design of Supercavitating Vehicles Based on Cascade Method". W 2021 IEEE 7th International Conference on Control Science and Systems Engineering (ICCSSE). IEEE, 2021. http://dx.doi.org/10.1109/iccsse52761.2021.9545103.
Pełny tekst źródłaTing, Liu, Jiang Nan i Jing Yuanwei. "Nonlinear large disturbance attenuation controller design based on backstepping method". W 2013 25th Chinese Control and Decision Conference (CCDC). IEEE, 2013. http://dx.doi.org/10.1109/ccdc.2013.6560925.
Pełny tekst źródłaBu, Fanping, i Bin Yao. "Nonlinear Model Based Coordinated Adaptive Robust Control of Electro-Hydraulic Robotic Manipulators: Methods and Comparative Studies". W ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/dsc-24581.
Pełny tekst źródłaYe, Hui, Wentao Xue i Xiaofei Yang. "Backstepping-Based Diving Control Design for Underactuated AUVs Combined with ILOS Method". W 2018 37th Chinese Control Conference (CCC). IEEE, 2018. http://dx.doi.org/10.23919/chicc.2018.8483805.
Pełny tekst źródłaVatankhah, Ramin, Mohammad Abediny, Hoda Sadeghian i Aria Alasty. "Backstepping Boundary Control for Unstable Second-Order Hyperbolic PDEs and Trajectory Tracking". W ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87038.
Pełny tekst źródłaHelian, Bobo, Zheng Chen, Bin Yao, Yi Yan i Chiang Lee. "Adaptive Robust Control of a Pump Control Hydraulic System". W ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5076.
Pełny tekst źródłaRaporty organizacyjne na temat "Backstepping methods in control design"
Steinberg, Marc L., i Anthony B. Page. Nonlinear Adaptive Flight Control with a Backstepping Design Approach. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1998. http://dx.doi.org/10.21236/ada350986.
Pełny tekst źródłaBorggaard, J. T., J. A. Burns, E. M. Cliff i T. Iliescu. Computational Methods for Design, Control and Optimization. Fort Belvoir, VA: Defense Technical Information Center, październik 2007. http://dx.doi.org/10.21236/ada472915.
Pełny tekst źródłaWatson, Layne T. Homotopy Methods in Control System Design and Analysis. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1992. http://dx.doi.org/10.21236/ada251641.
Pełny tekst źródłaRugh, Wilson J. Analysis and Design Methods for Nonlinear Control Systems. Fort Belvoir, VA: Defense Technical Information Center, marzec 1990. http://dx.doi.org/10.21236/ada221621.
Pełny tekst źródłaFrosch, Robert, Jacob Bice i Jared Erickson. Design Methods for the Control of Restrained Shrinkage Cracking. West Lafayette, IN: Purdue University, 2006. http://dx.doi.org/10.5703/1288284313363.
Pełny tekst źródłaFrosch, Robert, Jacob Bice i Jared Erickson. Design Methods for the Control of Restrained Shrinkage Cracking. West Lafayette, IN: Purdue University, 2006. http://dx.doi.org/10.5703/1288284313452.
Pełny tekst źródłaBall, Sydney J., Thomas L. Wilson Jr i Richard Thomas Wood. Advanced Control and Protection system Design Methods for Modular HTGRs. Office of Scientific and Technical Information (OSTI), czerwiec 2012. http://dx.doi.org/10.2172/1047629.
Pełny tekst źródłaPhero, Timothy, Amey Khanolkar, Kiyo Fujimoto, James Smith i Michael McMurtrey. Development of Quality Control Methods for Robust and Reliable Sensor Design. Office of Scientific and Technical Information (OSTI), październik 2022. http://dx.doi.org/10.2172/1901810.
Pełny tekst źródłaDumbacher, S. Multivariable Methods for the Design, Identification and Control of Large Space Structures. Volume 2. Optimal. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1989. http://dx.doi.org/10.21236/ada226699.
Pełny tekst źródłaQamhia, Issam, i Erol Tutumluer. Evaluation of Geosynthetics Use in Pavement Foundation Layers and Their Effects on Design Methods. Illinois Center for Transportation, sierpień 2021. http://dx.doi.org/10.36501/0197-9191/21-025.
Pełny tekst źródła