Artykuły w czasopismach na temat „Backbone Modification”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Backbone Modification”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Servatius, Phil, Lukas Junk i Uli Kazmaier. "Peptide Modifications: Versatile Tools in Peptide and Natural Product Syntheses". Synlett 30, nr 11 (2.04.2019): 1289–302. http://dx.doi.org/10.1055/s-0037-1612417.
Pełny tekst źródłaRehpenn, Andreas, Alexandra Walter i Golo Storch. "Molecular Editing of Flavins for Catalysis". Synthesis 53, nr 15 (22.03.2021): 2583–93. http://dx.doi.org/10.1055/a-1458-2419.
Pełny tekst źródłaSchmidtgall, Boris, Claudia Höbartner i Christian Ducho. "NAA-modified DNA oligonucleotides with zwitterionic backbones: stereoselective synthesis of A–T phosphoramidite building blocks". Beilstein Journal of Organic Chemistry 11 (13.01.2015): 50–60. http://dx.doi.org/10.3762/bjoc.11.8.
Pełny tekst źródłaMeng, Melissa, Boris Schmidtgall i Christian Ducho. "Enhanced Stability of DNA Oligonucleotides with Partially Zwitterionic Backbone Structures in Biological Media". Molecules 23, nr 11 (10.11.2018): 2941. http://dx.doi.org/10.3390/molecules23112941.
Pełny tekst źródłaChang, Chi-Fon, i Micheal H. Zehfus. "Effects of backbone modification on helical peptides: The reduced carbonyl modification". Biopolymers 46, nr 3 (wrzesień 1998): 181–93. http://dx.doi.org/10.1002/(sici)1097-0282(199809)46:3<181::aid-bip5>3.0.co;2-h.
Pełny tekst źródłaDawson, Philip E., Gangamani Beligere i Liang Yan. "Modification of the polypeptide backbone using chemical synthesis". Journal of Molecular Graphics and Modelling 18, nr 4-5 (2000): 550. http://dx.doi.org/10.1016/s1093-3263(00)80112-6.
Pełny tekst źródłaShaykhutdinova, Polina, i Martin Oestreich. "Further Structural Modification of Sulfur-Stabilized Silicon Cations with Binaphthyl Backbones". Synthesis 51, nr 10 (11.03.2019): 2221–29. http://dx.doi.org/10.1055/s-0037-1610697.
Pełny tekst źródłaFan, Linmeng, Min Du, Lichun Kong, Yan Cai i Xiaobo Hu. "Recognition Site Modifiable Macrocycle: Synthesis, Functional Group Variation and Structural Inspection". Molecules 28, nr 3 (31.01.2023): 1338. http://dx.doi.org/10.3390/molecules28031338.
Pełny tekst źródłaMazo, Nuria, Claudio D. Navo, Jesús M. Peregrina, Jesús H. Busto i Gonzalo Jiménez-Osés. "Selective modification of sulfamidate-containing peptides". Organic & Biomolecular Chemistry 18, nr 32 (2020): 6265–75. http://dx.doi.org/10.1039/d0ob01061h.
Pełny tekst źródłaStrąkowska, Anna, Anna Kosmalska i Marian Zaborski. "Silsesquioxanes as Modifying Agents of Methylvinylsilicone Rubber". Materials Science Forum 714 (marzec 2012): 183–89. http://dx.doi.org/10.4028/www.scientific.net/msf.714.183.
Pełny tekst źródłaMesibov, Robert. ""Look what they've done to our data!" — How Aggregators Change Data Items in Collection Records". Biodiversity Information Science and Standards 2 (15.06.2018): e25906. http://dx.doi.org/10.3897/biss.2.25906.
Pełny tekst źródłaSester, David P., Shalin Naik, Shannon J. Beasley, David A. Hume i Katryn J. Stacey. "Phosphorothioate Backbone Modification Modulates Macrophage Activation by CpG DNA". Journal of Immunology 165, nr 8 (15.10.2000): 4165–73. http://dx.doi.org/10.4049/jimmunol.165.8.4165.
Pełny tekst źródłaWang, Xiaoyan, Mengli Feng, Lu Xiao, Aijun Tong i Yu Xiang. "Postsynthetic Modification of DNA Phosphodiester Backbone for Photocaged DNAzyme". ACS Chemical Biology 11, nr 2 (16.12.2015): 444–51. http://dx.doi.org/10.1021/acschembio.5b00867.
Pełny tekst źródłaMurahashi, Shun-Ichi, Akira Mitani i Kyuuhei Kitao. "Ruthenium-catalyzed glycine-selective oxidative backbone modification of peptides". Tetrahedron Letters 41, nr 52 (grudzień 2000): 10245–49. http://dx.doi.org/10.1016/s0040-4039(00)01823-2.
Pełny tekst źródłaAbkowitz, M. A., M. Stolka, R. J. Weagley, K. McGrane i F. E. Knier. "Chemical modification of charge transport in silicon backbone polymers". Synthetic Metals 28, nr 1-2 (styczeń 1989): 553–58. http://dx.doi.org/10.1016/0379-6779(89)90573-0.
Pełny tekst źródłaDarapaneni, Chandra Mohan, Prathap Jeya Kaniraj i Galia Maayan. "Water soluble hydrophobic peptoids via a minor backbone modification". Organic & Biomolecular Chemistry 16, nr 9 (2018): 1480–88. http://dx.doi.org/10.1039/c7ob02928d.
Pełny tekst źródłaMahanta, Nilkamal, Andi Liu, Shihui Dong, Satish K. Nair i Douglas A. Mitchell. "Enzymatic reconstitution of ribosomal peptide backbone thioamidation". Proceedings of the National Academy of Sciences 115, nr 12 (5.03.2018): 3030–35. http://dx.doi.org/10.1073/pnas.1722324115.
Pełny tekst źródłaZhu, Sucheng, Tao Zheng, Lingxin Kong, Jinli Li, Bo Cao, Michael S. DeMott, Yihua Sun i in. "Development of Methods Derived from Iodine-Induced Specific Cleavage for Identification and Quantitation of DNA Phosphorothioate Modifications". Biomolecules 10, nr 11 (28.10.2020): 1491. http://dx.doi.org/10.3390/biom10111491.
Pełny tekst źródłaYang, Weiwei, Alexey Fomenkov, Dan Heiter, Shuang-yong Xu i Laurence Ettwiller. "High-throughput sequencing of EcoWI restriction fragments maps the genome-wide landscape of phosphorothioate modification at base resolution". PLOS Genetics 18, nr 9 (19.09.2022): e1010389. http://dx.doi.org/10.1371/journal.pgen.1010389.
Pełny tekst źródłaLiu, Shi, Ross W. Cheloha, Tomoyuki Watanabe, Thomas J. Gardella i Samuel H. Gellman. "Receptor selectivity from minimal backbone modification of a polypeptide agonist". Proceedings of the National Academy of Sciences 115, nr 49 (15.11.2018): 12383–88. http://dx.doi.org/10.1073/pnas.1815294115.
Pełny tekst źródłaRozners, Eriks. "Recent Advances in Chemical Modification of Peptide Nucleic Acids". Journal of Nucleic Acids 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/518162.
Pełny tekst źródłaMicklefield, Jason. "Backbone Modification of Nucleic Acids: Synthesis, Structure and Therapeutic Applications". Current Medicinal Chemistry 8, nr 10 (1.08.2001): 1157–79. http://dx.doi.org/10.2174/0929867013372391.
Pełny tekst źródłaLi, Cong, Ling Zhu, Zhi Zhu, Hao Fu, Gareth Jenkins, Chunming Wang, Yuan Zou, Xin Lu i Chaoyong James Yang. "Backbone modification promotes peroxidase activity of G-quadruplex-based DNAzyme". Chemical Communications 48, nr 67 (2012): 8347. http://dx.doi.org/10.1039/c2cc32919k.
Pełny tekst źródłaRanganathan, Darshan, Narendra K. Vaish i Kavita Shah. "Protein Backbone Modification by Novel C.alpha.-C Side-Chain Scission". Journal of the American Chemical Society 116, nr 15 (lipiec 1994): 6545–57. http://dx.doi.org/10.1021/ja00094a008.
Pełny tekst źródłaZanda, Matteo. "Trifluoromethyl group: an effective xenobiotic function for peptide backbone modification". New Journal of Chemistry 28, nr 12 (2004): 1401. http://dx.doi.org/10.1039/b405955g.
Pełny tekst źródłaZuo, Chao, Shan Tang, Yan-Yan Si, Zhipeng A. Wang, Chang-Lin Tian i Ji-Shen Zheng. "Efficient synthesis of longer Aβ peptides via removable backbone modification". Organic & Biomolecular Chemistry 14, nr 22 (2016): 5012–18. http://dx.doi.org/10.1039/c6ob00712k.
Pełny tekst źródłaDe Mesmaeker, Alain, Adrian Waldner, Jacques Lebreton, Pascale Hoffmann, Valérie Fritsch, Romain M. Wolf i Susan M. Freier. "Amides as a New Type of Backbone Modification in Oligonucleotides". Angewandte Chemie International Edition in English 33, nr 2 (1.02.1994): 226–29. http://dx.doi.org/10.1002/anie.199402261.
Pełny tekst źródłaZaini, Mahirah, Rohah A. Majid i Hossein Nikbakht. "Modification of Montmorillonite with Diamine Surfactants". Applied Mechanics and Materials 695 (listopad 2014): 224–27. http://dx.doi.org/10.4028/www.scientific.net/amm.695.224.
Pełny tekst źródłaScully, Conor C. G., Christopher J. White i Andrei K. Yudin. "The effect of backbone flexibility on site-selective modification of macrocycles". Organic & Biomolecular Chemistry 14, nr 43 (2016): 10230–37. http://dx.doi.org/10.1039/c6ob01778a.
Pełny tekst źródłaLi, Yuxiang, Minseok Kim, Ziang Wu, Changyeon Lee, Young Woong Lee, Jin-Woo Lee, Young Jun Lee, Ergang Wang, Bumjoon J. Kim i Han Young Woo. "Influence of backbone modification of difluoroquinoxaline-based copolymers on the interchain packing, blend morphology and photovoltaic properties of nonfullerene organic solar cells". Journal of Materials Chemistry C 7, nr 6 (2019): 1681–89. http://dx.doi.org/10.1039/c8tc06206d.
Pełny tekst źródłaShan, Junwen, Thomas Böck, Thorsten Keller, Leonard Forster, Torsten Blunk, Jürgen Groll i Jörg Teßmar. "TEMPO/TCC as a Chemo Selective Alternative for the Oxidation of Hyaluronic Acid". Molecules 26, nr 19 (1.10.2021): 5963. http://dx.doi.org/10.3390/molecules26195963.
Pełny tekst źródłaMax, J. B., D. V. Pergushov, L. V. Sigolaeva i F. H. Schacher. "Polyampholytic graft copolymers based on polydehydroalanine (PDha) – synthesis, solution behavior and application as dispersants for carbon nanotubes". Polymer Chemistry 10, nr 23 (2019): 3006–19. http://dx.doi.org/10.1039/c8py01390j.
Pełny tekst źródłaHandelmann, Jens, Chatla Naga Babu, Henning Steinert, Christopher Schwarz, Thorsten Scherpf, Alexander Kroll i Viktoria H. Gessner. "Towards the rational design of ylide-substituted phosphines for gold(i)-catalysis: from inactive to ppm-level catalysis". Chemical Science 12, nr 12 (2021): 4329–37. http://dx.doi.org/10.1039/d1sc00105a.
Pełny tekst źródłaYi, Zhengran, Lanchao Ma, Ping Li, Long Xu, Xiaowei Zhan, Jingui Qin, Xingguo Chen, Yunqi Liu i Shuai Wang. "Enhancing the organic thin-film transistor performance of diketopyrrolopyrrole–benzodithiophene copolymers via the modification of both conjugated backbone and side chain". Polymer Chemistry 6, nr 30 (2015): 5369–75. http://dx.doi.org/10.1039/c5py00704f.
Pełny tekst źródłaTang, Shan, Chao Zuo, Dong-Liang Huang, Xiao-Ying Cai, Long-Hua Zhang, Chang-Lin Tian, Ji-Shen Zheng i Lei Liu. "Chemical synthesis of membrane proteins by the removable backbone modification method". Nature Protocols 12, nr 12 (16.11.2017): 2554–69. http://dx.doi.org/10.1038/nprot.2017.129.
Pełny tekst źródłaCheloha, Ross W., Tomoyuki Watanabe, Thomas Dean, Samuel H. Gellman i Thomas J. Gardella. "Backbone Modification of a Parathyroid Hormone Receptor-1 Antagonist/Inverse Agonist". ACS Chemical Biology 11, nr 10 (17.08.2016): 2752–62. http://dx.doi.org/10.1021/acschembio.6b00404.
Pełny tekst źródłaLi, Jia-Bin, Shan Tang, Ji-Shen Zheng, Chang-Lin Tian i Lei Liu. "Removable Backbone Modification Method for the Chemical Synthesis of Membrane Proteins". Accounts of Chemical Research 50, nr 5 (4.04.2017): 1143–53. http://dx.doi.org/10.1021/acs.accounts.7b00001.
Pełny tekst źródłaKuwahara, M., S. Minezaki, J. i. Nagashima, H. Ozaki i H. Sawai. "Effect of backbone-modification of oligodeoxyribonucleic acid on primer extension reactions". Nucleic Acids Symposium Series 52, nr 1 (1.09.2008): 453–54. http://dx.doi.org/10.1093/nass/nrn230.
Pełny tekst źródłaKato, Kazuaki, Tomoya Ise i Kohzo Ito. "Crystal structure transition of polyrotaxanes attributable to competing rings and backbone induced by in situ modification of the backbone". Polymer 55, nr 6 (marzec 2014): 1514–19. http://dx.doi.org/10.1016/j.polymer.2014.01.044.
Pełny tekst źródłaVorherr, Thomas, Ian Lewis, Joerg Berghausen, Felix Huth, Michael Schaefer, Roman Wille, Jinhai Gao i Bing Wang. "Pyridyl-Ala Modified Cyclic Hexapeptides: In-Vitro and In-Vivo Profiling for Oral Bioavailability". International Journal of Peptide Research and Therapeutics 26, nr 3 (11.10.2019): 1383–97. http://dx.doi.org/10.1007/s10989-019-09935-y.
Pełny tekst źródłaSu, Yongdong, Maitsetseg Bayarjargal, Tracy K. Hale i Vyacheslav V. Filichev. "DNA with zwitterionic and negatively charged phosphate modifications: Formation of DNA triplexes, duplexes and cell uptake studies". Beilstein Journal of Organic Chemistry 17 (29.03.2021): 749–61. http://dx.doi.org/10.3762/bjoc.17.65.
Pełny tekst źródłaFuchs, Elisabeth, Christoph Falschlunger, Ronald Micura i Kathrin Breuker. "The effect of adenine protonation on RNA phosphodiester backbone bond cleavage elucidated by deaza-nucleobase modifications and mass spectrometry". Nucleic Acids Research 47, nr 14 (5.07.2019): 7223–34. http://dx.doi.org/10.1093/nar/gkz574.
Pełny tekst źródłaRajagopalan, Narayani, i A. S. Khanna. "Effect of Methyltrimethoxy Silane Modification on Yellowing of Epoxy Coating on UV (B) Exposure". Journal of Coatings 2014 (11.06.2014): 1–7. http://dx.doi.org/10.1155/2014/515470.
Pełny tekst źródłaDe Zotti, Marta, Barbara Biondi, Cristina Peggion, Matteo De Poli, Haleh Fathi, Simona Oancea, Claudio Toniolo i Fernando Formaggio. "Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on folding and bioactivity". Beilstein Journal of Organic Chemistry 8 (24.07.2012): 1161–71. http://dx.doi.org/10.3762/bjoc.8.129.
Pełny tekst źródłaAfsar, Ashfaq, Laurence M. Harwood, Michael J. Hudson, James Westwood i Andreas Geist. "Effective separation of the actinides Am(iii) and Cm(iii) by electronic modulation of bis-(1,2,4-triazin-3-yl)phenanthrolines". Chemical Communications 51, nr 27 (2015): 5860–63. http://dx.doi.org/10.1039/c5cc00567a.
Pełny tekst źródłaPurushottam, Landa, Srinivasa Rao Adusumalli, Maheshwerreddy Chilamari i Vishal Rai. "Chemoselective and site-selective peptide and native protein modification enabled by aldehyde auto-oxidation". Chemical Communications 53, nr 5 (2017): 959–62. http://dx.doi.org/10.1039/c6cc09555k.
Pełny tekst źródłaPhan, Hoang Anh T., Sam G. Giannakoulias, Taylor M. Barrett, Chunxiao Liu i E. James Petersson. "Rational design of thioamide peptides as selective inhibitors of cysteine protease cathepsin L". Chemical Science 12, nr 32 (2021): 10825–35. http://dx.doi.org/10.1039/d1sc00785h.
Pełny tekst źródłaLiu, Baizhen. "Blood Cell Count and Detection Method Based on YOLO". Highlights in Science, Engineering and Technology 27 (27.12.2022): 594–99. http://dx.doi.org/10.54097/hset.v27i.3822.
Pełny tekst źródłaWang, Chenchen, i Rampi Ramprasad. "Novel Hybrid Polymer Dielectrics Based on Group 14 Chemical Motifs". International Journal of High Speed Electronics and Systems 23, nr 01n02 (marzec 2014): 1420002. http://dx.doi.org/10.1142/s012915641420002x.
Pełny tekst źródłaCheloha, Ross W., Akira Maeda, Thomas Dean, Thomas J. Gardella i Samuel H. Gellman. "Backbone modification of a polypeptide drug alters duration of action in vivo". Nature Biotechnology 32, nr 7 (15.06.2014): 653–55. http://dx.doi.org/10.1038/nbt.2920.
Pełny tekst źródła