Gotowa bibliografia na temat „B-Spline Curve”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „B-Spline Curve”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "B-Spline Curve"
DUBE, MRIDULA, i REENU SHARMA. "PIECEWISE QUARTIC TRIGONOMETRIC POLYNOMIAL B-SPLINE CURVES WITH TWO SHAPE PARAMETERS". International Journal of Image and Graphics 12, nr 04 (październik 2012): 1250028. http://dx.doi.org/10.1142/s0219467812500283.
Pełny tekst źródłaDube, Mridula, i Reenu Sharma. "Cubic TP B-Spline Curves with a Shape Parameter". International Journal of Engineering Research in Africa 11 (październik 2013): 59–72. http://dx.doi.org/10.4028/www.scientific.net/jera.11.59.
Pełny tekst źródłaTirandaz, H., A. Nasrabadi i J. Haddadnia. "Curve Matching and Character Recognition by Using B-Spline Curves". International Journal of Engineering and Technology 3, nr 2 (2011): 183–86. http://dx.doi.org/10.7763/ijet.2011.v3.221.
Pełny tekst źródłaLiu, Xu Min, Wei Xiang Xu, Jing Xu i Yong Guan. "G1/C1 Matching of Spline Curves". Applied Mechanics and Materials 20-23 (styczeń 2010): 202–8. http://dx.doi.org/10.4028/www.scientific.net/amm.20-23.202.
Pełny tekst źródłaSukri, Nursyazni Binti Mohamad, Puteri Ainna Husna Binti Megat Mohd, Siti Musliha Binti Nor-Al-Din i Noor Khairiah Binti Razali. "Irregular Symmetrical Object Designed By Using Lambda Miu B-Spline Degree Four". Journal of Physics: Conference Series 2084, nr 1 (1.11.2021): 012018. http://dx.doi.org/10.1088/1742-6596/2084/1/012018.
Pełny tekst źródłaTSIANOS, KONSTANTINOS I., i RON GOLDMAN. "BEZIER AND B-SPLINE CURVES WITH KNOTS IN THE COMPLEX PLANE". Fractals 19, nr 01 (marzec 2011): 67–86. http://dx.doi.org/10.1142/s0218348x11005221.
Pełny tekst źródłaZhao, Yuming, Zhongke Wu, Xingce Wang i Xinyue Liu. "G2 Blending Ball B-Spline Curve by B-Spline". Proceedings of the ACM on Computer Graphics and Interactive Techniques 6, nr 1 (12.05.2023): 1–16. http://dx.doi.org/10.1145/3585504.
Pełny tekst źródłaRahayu, Putri Indi, i Pardomuan Robinson Sihombing. "PENERAPAN REGRESI NONPARAMETRIK KERNEL DAN SPLINE DALAM MEMODELKAN RETURN ON ASSET (ROA) BANK SYARIAH DI INDONESIA". JURNAL MATEMATIKA MURNI DAN TERAPAN EPSILON 14, nr 2 (2.03.2021): 115. http://dx.doi.org/10.20527/epsilon.v14i2.2968.
Pełny tekst źródłaCheng, Fuhua, Xuefu Wang i B. A. Barsky. "Quadratic B-spline curve interpolation". Computers & Mathematics with Applications 41, nr 1-2 (styczeń 2001): 39–50. http://dx.doi.org/10.1016/s0898-1221(01)85004-5.
Pełny tekst źródłaLord, Marilyn. "Curve and Surface Representation by Iterative B-Spline Fit to a Data Point Set". Engineering in Medicine 16, nr 1 (styczeń 1987): 29–35. http://dx.doi.org/10.1243/emed_jour_1987_016_008_02.
Pełny tekst źródłaRozprawy doktorskie na temat "B-Spline Curve"
De, Santis Ruggero. "Curve spline generalizzate di interpolazione locale". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9016/.
Pełny tekst źródłaBaki, Isa. "Yield Curve Estimation By Spline-based Models". Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12608050/index.pdf.
Pełny tekst źródłaRandrianarivony, Maharavo, i Guido Brunnett. "Parallel implementation of curve reconstruction from noisy samples". Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200600519.
Pełny tekst źródłaAntonelli, Michele. "New strategies for curve and arbitrary-topology surface constructions for design". Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3423911.
Pełny tekst źródłaQuesta tesi presenta alcune nuove costruzioni per curve e superfici a topologia arbitraria nel contesto della modellazione geometrica. In particolare, riguarda principalmente tre argomenti strettamente collegati tra loro che sono di interesse sia nella ricerca teorica sia in quella applicata: le superfici di suddivisione, l'interpolazione locale non-uniforme (nei casi univariato e bivariato), e gli spazi di spline generalizzate. Nello specifico, descriviamo una strategia per l'integrazione di superfici di suddivisione in sistemi di progettazione assistita dal calcolatore e forniamo degli esempi per mostrare l'efficacia della sua implementazione. Inoltre, presentiamo un metodo per la costruzione di interpolanti univariati polinomiali a tratti, non-uniformi, a supporto locale e che hanno grado minimo rispetto agli altri parametri di progettazione prescritti (come l'ampiezza del supporto, l'ordine di continuità e l'ordine di approssimazione). Sempre nel contesto dell'interpolazione locale non-uniforme, ma nel caso di superfici, introduciamo una nuova strategia di parametrizzazione che, insieme a una opportuna tecnica di patching, ci permette di definire superfici composite che interpolano mesh o network di curve a topologia arbitraria e che soddisfano i requisiti di regolarità e di qualità estetica di forma solitamente richiesti nell'ambito della modellazione CAD. Infine, nel contesto delle spline generalizzate, proponiamo un approccio per la costruzione della base (B-spline) ottimale, normalizzata, totalmente positiva, riconosciuta come la miglior base di rappresentazione ai fini della progettazione. In aggiunta, forniamo una procedura numerica per controllare l'esistenza di una tale base in un dato spazio di spline generalizzate. Tutte le costruzioni qui presentate sono state ideate tenendo in considerazione anche l'importanza delle applicazioni e dell'implementazione, e dei relativi requisiti che le procedure numeriche devono soddisfare, in particolare nel contesto CAD.
Popiel, Tomasz. "Geometrically-defined curves in Riemannian manifolds". University of Western Australia. School of Mathematics and Statistics, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0119.
Pełny tekst źródłaQu, Ruibin. "Recursive subdivision algorithms for curve and surface design". Thesis, Brunel University, 1990. http://bura.brunel.ac.uk/handle/2438/5447.
Pełny tekst źródłaGonzález, Cindy. "Les courbes algébriques trigonométriques à hodographe pythagorien pour résoudre des problèmes d'interpolation deux et trois-dimensionnels et leur utilisation pour visualiser les informations dentaires dans des volumes tomographiques 3D". Thesis, Valenciennes, 2018. http://www.theses.fr/2018VALE0001/document.
Pełny tekst źródłaInterpolation problems have been widely studied in Computer Aided Geometric Design (CAGD). They consist in the construction of curves and surfaces that pass exactly through a given data set, such as point clouds, tangents, curvatures, lines/planes, etc. In general, these curves and surfaces are represented in a parametrized form. This representation is independent of the coordinate system, it adapts itself well to geometric transformations and the differential geometric properties of curves and surfaces are invariant under reparametrization. In this context, the main goal of this thesis is to present 2D and 3D data interpolation schemes by means of Algebraic-Trigonometric Pythagorean-Hodograph (ATPH) curves. The latter are parametric curves defined in a mixed algebraic-trigonometric space, whose hodograph satisfies a Pythagorean condition. This representation allows to analytically calculate the curve's arc-length as well as the rational-trigonometric parametrization of the offsets curves. These properties are usable for the design of geometric models in many applications including manufacturing, architectural design, shipbuilding, computer graphics, and many more. In particular, we are interested in the geometric modeling of odontological objects. To this end, we use the spatial ATPH curves for the construction of developable patches within 3D odontological volumes. This may be a useful tool for extracting information of interest along dental structures. We give an overview of how some similar interpolating problems have been addressed by the scientific community. Then in chapter 2, we consider the construction of planar C2 ATPH spline curves that interpolate an ordered sequence of points. This problem has many solutions, its number depends on the number of interpolating points. Therefore, we employ two methods to find them. Firstly, we calculate all solutions by a homotopy method. However, it is empirically observed that only one solution does not have any self-intersections. Hence, the Newton-Raphson iteration method is used to directly compute this \good" solution. Note that C2 ATPH spline curves depend on several free parameters, which allow to obtain a diversity of interpolants. Thanks to these shape parameters, the ATPH curves prove to be more exible and versatile than their polynomial counterpart, the well known Pythagorean-Hodograph (PH) quintic curves and polynomial curves in general. These parameters are optimally chosen through a minimization process of fairness measures. We design ATPH curves that closely agree with well-known trigonometric curves by adjusting the shape parameters. We extend the planar ATPH curves to the case of spatial ATPH curves in chapter 3. This characterization is given in terms of quaternions, because this allows to properly analyze their properties and simplify the calculations. We employ the spatial ATPH curves to solve the first-order Hermite interpolation problem. The obtained ATPH interpolants depend on three free angular values. As in the planar case, we optimally choose these parameters by the minimization of integral shape measures. This process is also used to calculate the C1 interpolating ATPH curves that closely approximate well-known 3D parametric curves. To illustrate this performance, we present the process for some kind of helices. In chapter 4 we then use these C1 ATPH splines for guiding developable surface patches, which are deployed within odontological computed tomography (CT) volumes, in order to visualize information of interest for the medical professional. Particularly, we construct piecewise conical surfaces along smooth ATPH curves to display information related to the anatomical structure of human jawbones. This information may be useful in clinical assessment, diagnosis and/or treatment plan. Finally, the obtained results are analyzed and conclusions are drawn in chapter 5
Ramaswami, Hemant. "A Novel Method for Accurate Evaluation of Size for Cylindrical Components". University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1267548284.
Pełny tekst źródłaOndroušková, Jana. "Modelování NURBS křivek a ploch v projektivním prostoru". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2009. http://www.nusl.cz/ntk/nusl-228872.
Pełny tekst źródłaŠkvarenina, Ľubomír. "Interpolace signálů pomocí NURBS křivek". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220618.
Pełny tekst źródłaKsiążki na temat "B-Spline Curve"
Su, Pu-chʻing. Computational geometry--curve and surface modeling. Boston: Academic Press, 1989.
Znajdź pełny tekst źródła1928-, Boehm Wolfgang, i Paluszny Marco 1950-, red. Bézier and B-spline techniques. Berlin: Springer, 2002.
Znajdź pełny tekst źródłaGoldman, Ronald N., i Tom Lyche, red. Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1992. http://dx.doi.org/10.1137/1.9781611971583.
Pełny tekst źródła1947-, Goldman Ron, Lyche Tom i Society for Industrial and Applied Mathematics., red. Knot insertion and deletion algorithms for B-spline curves and surfaces. Philadelphia: Society for Industrial and Applied Mathematics, 1993.
Znajdź pełny tekst źródłaBu-Qing, Su, i Liu Ding-Yuan. Computational Geometry: Curve and Surface Modeling. Academic Pr, 1989.
Znajdź pełny tekst źródłaBu-Qing, Su, i Liu Ding-Yuan. Computational Geometry: Curve and Surface Modeling. Academic Pr, 1989.
Znajdź pełny tekst źródłaAchieving high data reduction with integral cubic B-splines. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1993.
Znajdź pełny tekst źródłaPrautzsch, Hartmut, Marco Paluszny i Wolfgang Boehm. Bezier and B-Spline Techniques. Springer, 2002.
Znajdź pełny tekst źródłaLyche, Tom. Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces (Geometric Design Publications). Society for Industrial Mathematics, 1987.
Znajdź pełny tekst źródłaCzęści książek na temat "B-Spline Curve"
Kermarrec, Gaël, Vibeke Skytt i Tor Dokken. "Locally Refined B-Splines". W Optimal Surface Fitting of Point Clouds Using Local Refinement, 13–21. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16954-0_2.
Pełny tekst źródłaNguyen-Tan, Khoi, i Nguyen Nguyen-Hoang. "Handwriting Recognition Using B-Spline Curve". W Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 335–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36642-0_33.
Pełny tekst źródłaPark, Hyungjun, i Joo-Haeng Lee. "B-Spline Curve Fitting Using Dominant Points". W Computational Science – ICCS 2006, 362–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11758525_48.
Pełny tekst źródłaQiu, Jiaqi, i Weiqing Wang. "Verifiable Random Number Based on B-Spline Curve". W Advances in Intelligent Systems and Computing, 25–30. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62743-0_4.
Pełny tekst źródłaChang, Jincai, Zhao Wang i Aimin Yang. "Construction of Transition Curve between Nonadjacent Cubic T-B Spline Curves". W Information Computing and Applications, 454–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16167-4_58.
Pełny tekst źródłaTan, Joi San, Ibrahim Venkat i Bahari Belaton. "An Analytical Curvature B-Spline Algorithm for Effective Curve Modeling". W Advances in Visual Informatics, 283–95. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25939-0_25.
Pełny tekst źródłaLoucera, Carlos, Andrés Iglesias i Akemi Gálvez. "Lévy Flight-Driven Simulated Annealing for B-spline Curve Fitting". W Nature-Inspired Algorithms and Applied Optimization, 149–69. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67669-2_7.
Pełny tekst źródłaSingh, Prem, i Himanshu Chaudhary. "Shape Optimization of the Flywheel Using the Cubic B Spline Curve". W Lecture Notes in Mechanical Engineering, 805–13. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6469-3_75.
Pełny tekst źródłaLin, Zizhi, i Yun Ding. "B-Spline Curve Fitting with Normal Constrains in Computer Aided Geometric Designed". W Advances in Intelligent Systems and Computing, 1282–89. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-33-4572-0_184.
Pełny tekst źródłaTongur, Vahit, i Erkan Ülker. "B-Spline Curve Knot Estimation by Using Niched Pareto Genetic Algorithm (NPGA)". W Proceedings in Adaptation, Learning and Optimization, 305–16. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27000-5_25.
Pełny tekst źródłaStreszczenia konferencji na temat "B-Spline Curve"
Fatah, Abd, i Rozaimi. "Fuzzy tuning B-spline curve". W INNOVATION AND ANALYTICS CONFERENCE AND EXHIBITION (IACE 2015): Proceedings of the 2nd Innovation and Analytics Conference & Exhibition. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4937076.
Pełny tekst źródłaLaube, Pascal, Matthias O. Franz i Georg Umlauf. "Deep Learning Parametrization for B-Spline Curve Approximation". W 2018 International Conference on 3D Vision (3DV). IEEE, 2018. http://dx.doi.org/10.1109/3dv.2018.00084.
Pełny tekst źródłaZakaria, Rozaimi, Abd Fatah Wahab i R. U. Gobithaasan. "Normal type-2 fuzzy interpolating B-spline curve". W PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): Germination of Mathematical Sciences Education and Research towards Global Sustainability. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4887635.
Pełny tekst źródłaZhaohui Huang i Cohen. "Affine-invariant B-spline moments for curve matching". W Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. IEEE Comput. Soc. Press, 1994. http://dx.doi.org/10.1109/cvpr.1994.323871.
Pełny tekst źródłaZhang, Wan-Jun, Shan-Ping Gao, Su-Jia Zhang i Feng Zhang. "Modification algorithm of Cubic B-spline curve interpolation". W 2016 4th International Conference on Machinery, Materials and Information Technology Applications. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icmmita-16.2016.94.
Pełny tekst źródłaWan, Yan, i Suna Yin. "Three-dimensional curve fitting based on cubic B-spline interpolation curve". W 2014 7th International Congress on Image and Signal Processing (CISP). IEEE, 2014. http://dx.doi.org/10.1109/cisp.2014.7003880.
Pełny tekst źródłaChu, Chih-Hsing, i Jang-Ting Chen. "Geometric Design of Uniform Developable B-Spline Surfaces". W ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/detc2004-57257.
Pełny tekst źródłaCheng, Siyuan, Xiangwei Zhang i Kelun Tang. "Shape Modification of B-Spline Curve with Geometric Constraints". W 2007 International Conference on Computational Intelligence and Security (CIS 2007). IEEE, 2007. http://dx.doi.org/10.1109/cis.2007.43.
Pełny tekst źródłaAiLian Leng, HuiXian Yang, WenLong Yue i Qiufang Dai. "An inverse algorithm of the cubic B-spline curve". W 2010 2nd Conference on Environmental Science and Information Application Technology (ESIAT). IEEE, 2010. http://dx.doi.org/10.1109/esiat.2010.5568896.
Pełny tekst źródłaXumin, Liu, i Xu Weixiang. "Uniform B-Spline Curve and Surface with Shape Parameters". W 2008 International Conference on Computer Science and Software Engineering. IEEE, 2008. http://dx.doi.org/10.1109/csse.2008.354.
Pełny tekst źródła