Spis treści
Gotowa bibliografia na temat „Aza-Wacker”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Aza-Wacker”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Aza-Wacker"
Li, Mengjuan, Jingya Li, Zhiguo Zhang, Liming Chen, Nana Ma, Qingfeng Liu, Xingjie Zhang i Guisheng Zhang. "Palladium-catalyzed intramolecular aza-Wacker-type cyclization of vinyl cyclopropanecarboxamides to access conformationally restricted aza[3.1.0]bicycles". RSC Advances 13, nr 39 (2023): 27158–66. http://dx.doi.org/10.1039/d3ra05440c.
Pełny tekst źródłaThomas, Annu Anna, Someshwar Nagamalla i Shyam Sathyamoorthi. "Salient features of the aza-Wacker cyclization reaction". Chemical Science 11, nr 31 (2020): 8073–88. http://dx.doi.org/10.1039/d0sc02554b.
Pełny tekst źródłaBarboza, Amanda Aline, Juliana Arantes Dantas, Guilherme Augusto de Melo Jardim, Marco Antonio Barbosa Ferreira, Mateus Oliveira Costa i Attilio Chiavegatti. "Recent Advances in Palladium-Catalyzed Oxidative Couplings in the Synthesis/Functionalization of Cyclic Scaffolds Using Molecular Oxygen as the Sole Oxidant". Synthesis 54, nr 09 (19.11.2021): 2081–102. http://dx.doi.org/10.1055/a-1701-7397.
Pełny tekst źródłaAdachi, Sota, i Yohei Okada. "Electrochemical radical cation aza-Wacker cyclizations". Beilstein Journal of Organic Chemistry 20 (5.08.2024): 1900–1905. http://dx.doi.org/10.3762/bjoc.20.165.
Pełny tekst źródłaYoun, So Won, i So Ra Lee. "Unusual 1,2-aryl migration in Pd(ii)-catalyzed aza-Wacker-type cyclization of 2-alkenylanilines". Organic & Biomolecular Chemistry 13, nr 16 (2015): 4652–56. http://dx.doi.org/10.1039/c5ob00361j.
Pełny tekst źródłaPeng, Xichao, i Pengju Feng. "Continuous-Flow Electrochemistry Promoted Aza-Wacker Cyclizations". Chinese Journal of Organic Chemistry 41, nr 7 (2021): 2918. http://dx.doi.org/10.6023/cjoc202100051.
Pełny tekst źródłaWang, Xin, Qinlin Wang, Yanru Xue, Kai Sun, Lanlan Wu i Bing Zhang. "An organoselenium-catalyzed N1- and N2-selective aza-Wacker reaction of alkenes with benzotriazoles". Chemical Communications 56, nr 32 (2020): 4436–39. http://dx.doi.org/10.1039/d0cc01079k.
Pełny tekst źródłaLi, Huimin, Lihao Liao i Xiaodan Zhao. "Organoselenium-Catalyzed Aza-Wacker Reactions: Efficient Access to Isoquinolinium Imides and an Isoquinoline N-Oxide". Synlett 30, nr 14 (28.06.2019): 1688–92. http://dx.doi.org/10.1055/s-0039-1690103.
Pełny tekst źródłaNagamalla, Someshwar, David K. Johnson i Shyam Sathyamoorthi. "Sulfamate-tethered aza-Wacker approach towards analogs of Bactobolin A". Medicinal Chemistry Research 30, nr 7 (6.04.2021): 1348–57. http://dx.doi.org/10.1007/s00044-021-02724-7.
Pełny tekst źródłaSen, Abhijit, Kazuhiro Takenaka i Hiroaki Sasai. "Enantioselective Aza-Wacker-Type Cyclization Promoted by Pd-SPRIX Catalyst". Organic Letters 20, nr 21 (24.10.2018): 6827–31. http://dx.doi.org/10.1021/acs.orglett.8b02946.
Pełny tekst źródłaRozprawy doktorskie na temat "Aza-Wacker"
Geulin, Anselme. "Synthèse de 3-amino-3-désoxyglycals par réaction d'aza-Wacker". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMIR42.
Pełny tekst źródła3-Amino-3-deoxyglycosides (ADGi) constitute an essential class of glycosides found in the structure of several important bioactive compounds. 3-Amino-3-deoxyglycals (ADGa) are promising donors for these ADGi. The glycal moiety allows ADGa to serve as donors of 2-deoxy-ADGi by glycosylation in the presence of an acceptor, or as donors of 1,2-trans-ADGi through an epoxidation / glycosylation sequence. This thesis work focuses on developing a new synthetic route for these ADGa, taking advantage of two key reactions: a Ferrier reaction followed by an aza-Wacker (AW) reaction in oxidizing conditions with carbamate type tether. This AW step enables C3-N bond formation and glycal reformation in a single step. Based on modified conditions from the literature using 1,4-benzoquinone (p-BQ), we obtained ADGa corresponding to the D-Glucal, D-Galactal, L-Rhamnal, and L-Fucal series, using DMF as the solvent. These ADGa were obtained orthogonally protected, and a proof of concept for their selective deprotection was demonstrated on the model ADGa. Finally, the ADGa derived from D-Galactal was subjected to an epoxidation / glycosylation sequence to synthesize a disaccharide with excellent yield and selectivity. The use of DMF as a solvent also allowed us to establish conditions for the AW cyclization, using dioxygen from the air as a reoxidant for Pd(0). The selectivity of the amidopalladation step was then examined for the two systems. After deuteration of the Ferrier adducts, we demonstrated that amidopalladation proceeded trans in both reoxidizing systems, starting from carbamates derived from D-Glucal and D-Galactal. Finally, two by-products of interest were studied. The first is a formal 1,3-functionalization of the model carbamate, and the reaction conditions for its synthesis were optimized. The second is a hexa-2,4-dienal derivative, which was isolated and fully characterized