Artykuły w czasopismach na temat „Autonomous and highly oscillatory differential equations”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Autonomous and highly oscillatory differential equations”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
DAVIDSON, B. D., and D. E. STEWART. "A NUMERICAL HOMOTOPY METHOD AND INVESTIGATIONS OF A SPRING-MASS SYSTEM." Mathematical Models and Methods in Applied Sciences 03, no. 03 (1993): 395–416. http://dx.doi.org/10.1142/s0218202593000217.
Pełny tekst źródłaPhilos, Ch G., I. K. Purnaras, and Y. G. Sficas. "ON THE BEHAVIOUR OF THE OSCILLATORY SOLUTIONS OF SECOND-ORDER LINEAR UNSTABLE TYPE DELAY DIFFERENTIAL EQUATIONS." Proceedings of the Edinburgh Mathematical Society 48, no. 2 (2005): 485–98. http://dx.doi.org/10.1017/s0013091503000993.
Pełny tekst źródłaOgorodnikova, S., and F. Sadyrbaev. "MULTIPLE SOLUTIONS OF NONLINEAR BOUNDARY VALUE PROBLEMS WITH OSCILLATORY SOLUTIONS." Mathematical Modelling and Analysis 11, no. 4 (2006): 413–26. http://dx.doi.org/10.3846/13926292.2006.9637328.
Pełny tekst źródłaCondon, Marissa, Alfredo Deaño, and Arieh Iserles. "On second-order differential equations with highly oscillatory forcing terms." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, no. 2118 (2010): 1809–28. http://dx.doi.org/10.1098/rspa.2009.0481.
Pełny tekst źródłaSanz-Serna, J. M. "Mollified Impulse Methods for Highly Oscillatory Differential Equations." SIAM Journal on Numerical Analysis 46, no. 2 (2008): 1040–59. http://dx.doi.org/10.1137/070681636.
Pełny tekst źródłaPetzold, Linda R., Laurent O. Jay, and Jeng Yen. "Numerical solution of highly oscillatory ordinary differential equations." Acta Numerica 6 (January 1997): 437–83. http://dx.doi.org/10.1017/s0962492900002750.
Pełny tekst źródłaCohen, David, Ernst Hairer, and Christian Lubich. "Modulated Fourier Expansions of Highly Oscillatory Differential Equations." Foundations of Computational Mathematics 3, no. 4 (2003): 327–45. http://dx.doi.org/10.1007/s10208-002-0062-x.
Pełny tekst źródłaCondon, M., A. Iserles, and S. P. Nørsett. "Differential equations with general highly oscillatory forcing terms." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, no. 2161 (2014): 20130490. http://dx.doi.org/10.1098/rspa.2013.0490.
Pełny tekst źródłaHerrmann, L. "Oscillatory Solutions of Some Autonomous Partial Differential Equations with a Parameter." Journal of Mathematical Sciences 236, no. 3 (2018): 367–75. http://dx.doi.org/10.1007/s10958-018-4117-1.
Pełny tekst źródłaChartier, Philippe, Joseba Makazaga, Ander Murua, and Gilles Vilmart. "Multi-revolution composition methods for highly oscillatory differential equations." Numerische Mathematik 128, no. 1 (2014): 167–92. http://dx.doi.org/10.1007/s00211-013-0602-0.
Pełny tekst źródłaLanets, O. S., V. T. Dmytriv, V. M. Borovets, I. A. Derevenko, and I. M. Horodetskyy. "Analytical Model of the Two-Mass Above Resonance System of the Eccentric-Pendulum Type Vibration Table." International Journal of Applied Mechanics and Engineering 25, no. 4 (2020): 116–29. http://dx.doi.org/10.2478/ijame-2020-0053.
Pełny tekst źródłaCondon, Marissa, Alfredo Deaño, Arieh Iserles, and Karolina Kropielnicka. "Efficient computation of delay differential equations with highly oscillatory terms." ESAIM: Mathematical Modelling and Numerical Analysis 46, no. 6 (2012): 1407–20. http://dx.doi.org/10.1051/m2an/2012004.
Pełny tekst źródłaMahdavi, Ashkan, Sheng-Wei Chi, and Negar Kamali. "Harmonic-Enriched Reproducing Kernel Approximation for Highly Oscillatory Differential Equations." Journal of Engineering Mechanics 146, no. 4 (2020): 04020014. http://dx.doi.org/10.1061/(asce)em.1943-7889.0001727.
Pełny tekst źródłaIserles, Arieh. "Think globally, act locally: Solving highly-oscillatory ordinary differential equations." Applied Numerical Mathematics 43, no. 1-2 (2002): 145–60. http://dx.doi.org/10.1016/s0168-9274(02)00122-8.
Pełny tekst źródłaLiu, Zhongli, Tianhai Tian, and Hongjiong Tian. "Asymptotic-numerical solvers for highly oscillatory second-order differential equations." Applied Numerical Mathematics 137 (March 2019): 184–202. http://dx.doi.org/10.1016/j.apnum.2018.11.004.
Pełny tekst źródłaSanz-Serna, J. M., and Beibei Zhu. "Word series high-order averaging of highly oscillatory differential equations with delay." Applied Mathematics and Nonlinear Sciences 4, no. 2 (2019): 445–54. http://dx.doi.org/10.2478/amns.2019.2.00042.
Pełny tekst źródłaAriel, Gil, Bjorn Engquist, and Richard Tsai. "A multiscale method for highly oscillatory ordinary differential equations with resonance." Mathematics of Computation 78, no. 266 (2008): 929–56. http://dx.doi.org/10.1090/s0025-5718-08-02139-x.
Pełny tekst źródłaLiu, Wensheng. "Averaging Theorems for Highly Oscillatory Differential Equations and Iterated Lie Brackets." SIAM Journal on Control and Optimization 35, no. 6 (1997): 1989–2020. http://dx.doi.org/10.1137/s0363012994268667.
Pełny tekst źródłaJohn, Sabo, and Pius Tumba. "The Efficiency of Block Hybrid Method for Solving Malthusian Growth Model and Prothero-Robinson Oscillatory Differential Equations." International Journal of Development Mathematics (IJDM) 1, no. 3 (2024): 008–22. http://dx.doi.org/10.62054/ijdm/0103.02.
Pełny tekst źródłaSAIRA and Wen-Xiu Ma. "An Approximation Method to Compute Highly Oscillatory Singular Fredholm Integro-Differential Equations." Mathematics 10, no. 19 (2022): 3628. http://dx.doi.org/10.3390/math10193628.
Pełny tekst źródłaZaman, Sakhi, Latif Ullah Khan, Irshad Hussain, and Lucian Mihet-Popa. "Fast Computation of Highly Oscillatory ODE Problems: Applications in High-Frequency Communication Circuits." Symmetry 14, no. 1 (2022): 115. http://dx.doi.org/10.3390/sym14010115.
Pełny tekst źródłaSanz-Serna, J. M., and Beibei Zhu. "A stroboscopic averaging algorithm for highly oscillatory delay problems." IMA Journal of Numerical Analysis 39, no. 3 (2018): 1110–33. http://dx.doi.org/10.1093/imanum/dry020.
Pełny tekst źródłaDizicheh, A. Karimi, F. Ismail, M. Tavassoli Kajani, and Mohammad Maleki. "A Legendre Wavelet Spectral Collocation Method for Solving Oscillatory Initial Value Problems." Journal of Applied Mathematics 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/591636.
Pełny tekst źródłaBao, W. "Uniformly Accurate Multiscale Time Integrators for Highly Oscillatory Second Order Differential Equations." Journal of Mathematical Study 47, no. 2 (2014): 111–50. http://dx.doi.org/10.4208/jms.v47n2.14.01.
Pełny tekst źródłaLiu, Zhongli, Hongjiong Tian, and Xiong You. "Adiabatic Filon-type methods for highly oscillatory second-order ordinary differential equations." Journal of Computational and Applied Mathematics 320 (August 2017): 1–14. http://dx.doi.org/10.1016/j.cam.2017.01.028.
Pełny tekst źródłaBlanes, Sergio, Fernando Casas, and Ander Murua. "Splitting methods for differential equations." Acta Numerica 33 (July 2024): 1–161. http://dx.doi.org/10.1017/s0962492923000077.
Pełny tekst źródłaBayly, Philip V., Larry A. Taber, and Anders E. Carlsson. "Damped and persistent oscillations in a simple model of cell crawling." Journal of The Royal Society Interface 9, no. 71 (2011): 1241–53. http://dx.doi.org/10.1098/rsif.2011.0627.
Pełny tekst źródłaLovetskiy, Konstantin P., Leonid A. Sevastianov, Michal Hnatič, and Dmitry S. Kulyabov. "Numerical Integration of Highly Oscillatory Functions with and without Stationary Points." Mathematics 12, no. 2 (2024): 307. http://dx.doi.org/10.3390/math12020307.
Pełny tekst źródłaBanshchikov, A. V., A. V. Lakeev, and V. A. Rusanov. "On polylinear differential realization of the determined dynamic chaos in the class of higher order equations with delay." Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, no. 10 (October 26, 2023): 3–21. http://dx.doi.org/10.26907/0021-3446-2023-10-3-21.
Pełny tekst źródłaLorenz, Katina, Tobias Jahnke, and Christian Lubich. "Adiabatic Integrators for Highly Oscillatory Second-Order Linear Differential Equations with Time-Varying Eigendecomposition." BIT Numerical Mathematics 45, no. 1 (2005): 91–115. http://dx.doi.org/10.1007/s10543-005-2637-9.
Pełny tekst źródłaWang, Bin, and Xinyuan Wu. "Improved Filon-type asymptotic methods for highly oscillatory differential equations with multiple time scales." Journal of Computational Physics 276 (November 2014): 62–73. http://dx.doi.org/10.1016/j.jcp.2014.07.035.
Pełny tekst źródłaBuchholz, Simone, Ludwig Gauckler, Volker Grimm, Marlis Hochbruck, and Tobias Jahnke. "Closing the gap between trigonometric integrators and splitting methods for highly oscillatory differential equations." IMA Journal of Numerical Analysis 38, no. 1 (2017): 57–74. http://dx.doi.org/10.1093/imanum/drx007.
Pełny tekst źródłaFox, B., L. S. Jennings, and A. Y. Zomaya. "Numerical Computation of Differential-Algebraic Equations for Non-Linear Dynamics of Multibody Systems Involving Contact Forces." Journal of Mechanical Design 123, no. 2 (1999): 272–81. http://dx.doi.org/10.1115/1.1353587.
Pełny tekst źródłaPhilos, Ch G., I. K. Purnaras, and Y. G. Sficas. "Asymptotic Decay of the Oscillatory Solutions to First Order Non-Autonomous Linear Unstable Type Delay Differential Equations." Funkcialaj Ekvacioj 49, no. 3 (2006): 385–413. http://dx.doi.org/10.1619/fesi.49.385.
Pełny tekst źródłaCrouseilles, Nicolas, Shi Jin, and Mohammed Lemou. "Nonlinear geometric optics method-based multi-scale numerical schemes for a class of highly oscillatory transport equations." Mathematical Models and Methods in Applied Sciences 27, no. 11 (2017): 2031–70. http://dx.doi.org/10.1142/s0218202517500385.
Pełny tekst źródłaO’NEALE, DION R. J., and ROBERT I. MCLACHLAN. "RECONSIDERING TRIGONOMETRIC INTEGRATORS." ANZIAM Journal 50, no. 3 (2009): 320–32. http://dx.doi.org/10.1017/s1446181109000042.
Pełny tekst źródłaHan, Houde, and Zhongyi Huang. "The Tailored Finite Point Method." Computational Methods in Applied Mathematics 14, no. 3 (2014): 321–45. http://dx.doi.org/10.1515/cmam-2014-0012.
Pełny tekst źródłaBrunner, Hermann, Yunyun Ma, and Yuesheng Xu. "The oscillation of solutions of Volterra integral and integro-differential equations with highly oscillatory kernels." Journal of Integral Equations and Applications 27, no. 4 (2015): 455–87. http://dx.doi.org/10.1216/jie-2015-27-4-455.
Pełny tekst źródłaKhanamiryan, M. "Quadrature methods for highly oscillatory linear and nonlinear systems of ordinary differential equations: part I." BIT Numerical Mathematics 48, no. 4 (2008): 743–61. http://dx.doi.org/10.1007/s10543-008-0201-0.
Pełny tekst źródłaDenk, G. "A new numerical method for the integration of highly oscillatory second-order ordinary differential equations." Applied Numerical Mathematics 13, no. 1-3 (1993): 57–67. http://dx.doi.org/10.1016/0168-9274(93)90131-a.
Pełny tekst źródłaSpigler, Renato. "Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method." Journal of Mathematical Analysis and Applications 463, no. 1 (2018): 318–44. http://dx.doi.org/10.1016/j.jmaa.2018.03.027.
Pełny tekst źródłaBayly, P. V., and S. K. Dutcher. "Steady dynein forces induce flutter instability and propagating waves in mathematical models of flagella." Journal of The Royal Society Interface 13, no. 123 (2016): 20160523. http://dx.doi.org/10.1098/rsif.2016.0523.
Pełny tekst źródłaBissembayev, Jomartov, Tuleshov, and Dikambay. "Analysis of the Oscillating Motion of a Solid Body on Vibrating Bearers." Machines 7, no. 3 (2019): 58. http://dx.doi.org/10.3390/machines7030058.
Pełny tekst źródłaGong, Ya Qi, Qin Chen, and Yong Feng Qi. "Solving of Partial Differential Equations by Numerical Manifold Method with Partially Overlapping Covers." Applied Mechanics and Materials 638-640 (September 2014): 1737–40. http://dx.doi.org/10.4028/www.scientific.net/amm.638-640.1737.
Pełny tekst źródłaChartier, Philippe, Florian Méhats, Mechthild Thalhammer, and Yong Zhang. "Convergence of multi-revolution composition time-splitting methods for highly oscillatory differential equations of Schrödinger type." ESAIM: Mathematical Modelling and Numerical Analysis 51, no. 5 (2017): 1859–82. http://dx.doi.org/10.1051/m2an/2017010.
Pełny tekst źródłaKhanamiryan, Marianna. "Quadrature methods for highly oscillatory linear and non-linear systems of ordinary differential equations: part II." BIT Numerical Mathematics 52, no. 2 (2011): 383–405. http://dx.doi.org/10.1007/s10543-011-0355-z.
Pełny tekst źródłaPhilos, Ch G., I. K. Purnaras, and Y. G. Sficas. "Asymptotic behavior of the oscillatory solutions to first order non-autonomous linear neutral delay differential equations of unstable type." Mathematical and Computer Modelling 46, no. 3-4 (2007): 422–38. http://dx.doi.org/10.1016/j.mcm.2006.11.012.
Pełny tekst źródłaMarszalek, Wieslaw, Jan Sadecki, and Maciej Walczak. "Computational Analysis of Ca2+ Oscillatory Bio-Signals: Two-Parameter Bifurcation Diagrams." Entropy 23, no. 7 (2021): 876. http://dx.doi.org/10.3390/e23070876.
Pełny tekst źródłaVilmart, Gilles. "Weak Second Order Multirevolution Composition Methods for Highly Oscillatory Stochastic Differential Equations with Additive or Multiplicative Noise." SIAM Journal on Scientific Computing 36, no. 4 (2014): A1770—A1796. http://dx.doi.org/10.1137/130935331.
Pełny tekst źródłaRomanchuk, Yaroslav, Mariia Sokil, and Leonid Polishchuk. "PERIODIC ATEB-FUNCTIONS AND THE VAN DER POL METHOD FOR CONSTRUCTING SOLUTIONS OF TWO-DIMENSIONAL NONLINEAR OSCILLATIONS MODELS OF ELASTIC BODIES." Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 14, no. 3 (2024): 15–20. http://dx.doi.org/10.35784/iapgos.6377.
Pełny tekst źródła