Gotowa bibliografia na temat „Autonomous and highly oscillatory differential equations”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Autonomous and highly oscillatory differential equations”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Autonomous and highly oscillatory differential equations"
DAVIDSON, B. D., i D. E. STEWART. "A NUMERICAL HOMOTOPY METHOD AND INVESTIGATIONS OF A SPRING-MASS SYSTEM". Mathematical Models and Methods in Applied Sciences 03, nr 03 (czerwiec 1993): 395–416. http://dx.doi.org/10.1142/s0218202593000217.
Pełny tekst źródłaPhilos, Ch G., I. K. Purnaras i Y. G. Sficas. "ON THE BEHAVIOUR OF THE OSCILLATORY SOLUTIONS OF SECOND-ORDER LINEAR UNSTABLE TYPE DELAY DIFFERENTIAL EQUATIONS". Proceedings of the Edinburgh Mathematical Society 48, nr 2 (23.05.2005): 485–98. http://dx.doi.org/10.1017/s0013091503000993.
Pełny tekst źródłaOgorodnikova, S., i F. Sadyrbaev. "MULTIPLE SOLUTIONS OF NONLINEAR BOUNDARY VALUE PROBLEMS WITH OSCILLATORY SOLUTIONS". Mathematical Modelling and Analysis 11, nr 4 (31.12.2006): 413–26. http://dx.doi.org/10.3846/13926292.2006.9637328.
Pełny tekst źródłaCondon, Marissa, Alfredo Deaño i Arieh Iserles. "On second-order differential equations with highly oscillatory forcing terms". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, nr 2118 (13.01.2010): 1809–28. http://dx.doi.org/10.1098/rspa.2009.0481.
Pełny tekst źródłaSanz-Serna, J. M. "Mollified Impulse Methods for Highly Oscillatory Differential Equations". SIAM Journal on Numerical Analysis 46, nr 2 (styczeń 2008): 1040–59. http://dx.doi.org/10.1137/070681636.
Pełny tekst źródłaPetzold, Linda R., Laurent O. Jay i Jeng Yen. "Numerical solution of highly oscillatory ordinary differential equations". Acta Numerica 6 (styczeń 1997): 437–83. http://dx.doi.org/10.1017/s0962492900002750.
Pełny tekst źródłaCohen, David, Ernst Hairer i Christian Lubich. "Modulated Fourier Expansions of Highly Oscillatory Differential Equations". Foundations of Computational Mathematics 3, nr 4 (1.10.2003): 327–45. http://dx.doi.org/10.1007/s10208-002-0062-x.
Pełny tekst źródłaCondon, M., A. Iserles i S. P. Nørsett. "Differential equations with general highly oscillatory forcing terms". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, nr 2161 (8.01.2014): 20130490. http://dx.doi.org/10.1098/rspa.2013.0490.
Pełny tekst źródłaHerrmann, L. "Oscillatory Solutions of Some Autonomous Partial Differential Equations with a Parameter". Journal of Mathematical Sciences 236, nr 3 (1.12.2018): 367–75. http://dx.doi.org/10.1007/s10958-018-4117-1.
Pełny tekst źródłaChartier, Philippe, Joseba Makazaga, Ander Murua i Gilles Vilmart. "Multi-revolution composition methods for highly oscillatory differential equations". Numerische Mathematik 128, nr 1 (17.01.2014): 167–92. http://dx.doi.org/10.1007/s00211-013-0602-0.
Pełny tekst źródłaRozprawy doktorskie na temat "Autonomous and highly oscillatory differential equations"
Bouchereau, Maxime. "Modélisation de phénomènes hautement oscillants par réseaux de neurones". Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENS034.
Pełny tekst źródłaThis thesis focuses on the application of Machine Learning to the study of highly oscillatory differential equations. More precisely, we are interested in an approach to accurately approximate the solution of a differential equation with the least amount of computations, using neural networks. First, the autonomous case is studied, where the proper- ties of backward analysis and neural networks are used to enhance existing numerical methods. Then, a generalization to the strongly oscillating case is proposed to improve a specific first-order numerical scheme tailored to this scenario. Subsequently, neural networks are employed to replace the necessary pre- computations for implementing uniformly ac- curate numerical methods to approximate so- lutions of strongly oscillating equations. This can be done either by building upon the work done for the autonomous case or by using a neural network structure that directly incorporates the equation’s structure
Khanamiryan, Marianna. "Numerical methods for systems of highly oscillatory ordinary differential equations". Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/226323.
Pełny tekst źródłaKanat, Bengi Tanoğlu Gamze. "Numerical Solution of Highly Oscillatory Differential Equations By Magnus Series Method/". [s.l.]: [s.n.], 2006. http://library.iyte.edu.tr/tezler/master/matematik/T000572.pdf.
Pełny tekst źródłaBréhier, Charles-Edouard. "Numerical analysis of highly oscillatory Stochastic PDEs". Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2012. http://tel.archives-ouvertes.fr/tel-00824693.
Pełny tekst źródłaKsiążki na temat "Autonomous and highly oscillatory differential equations"
Wu, Xinyuan, i Bin Wang. Geometric Integrators for Differential Equations with Highly Oscillatory Solutions. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0147-7.
Pełny tekst źródłaSchütte, Christof. A quasiresonant smoothing algorithm for solving large highly oscillatory differential equations from quantum chemistry. Aachen: Verlag Shaker, 1994.
Znajdź pełny tekst źródłaBin, Wang, i Xinyuan Wu. Geometric Integrators for Differential Equations with Highly Oscillatory Solutions. Springer Singapore Pte. Limited, 2021.
Znajdź pełny tekst źródłaBin, Wang, i Xinyuan Wu. Geometric Integrators for Differential Equations with Highly Oscillatory Solutions. Springer, 2022.
Znajdź pełny tekst źródłaCzęści książek na temat "Autonomous and highly oscillatory differential equations"
Hairer, Ernst, Gerhard Wanner i Christian Lubich. "Highly Oscillatory Differential Equations". W Springer Series in Computational Mathematics, 407–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05018-7_13.
Pełny tekst źródłaWu, Xinyuan, Xiong You i Bin Wang. "Effective Methods for Highly Oscillatory Second-Order Nonlinear Differential Equations". W Structure-Preserving Algorithms for Oscillatory Differential Equations, 185–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35338-3_8.
Pełny tekst źródłaLe Bris, Claude, Frédéric Legoll i Alexei Lozinski. "MsFEM à la Crouzeix-Raviart for Highly Oscillatory Elliptic Problems". W Partial Differential Equations: Theory, Control and Approximation, 265–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41401-5_11.
Pełny tekst źródłaWu, Xinyuan, Kai Liu i Wei Shi. "Improved Filon-Type Asymptotic Methods for Highly Oscillatory Differential Equations". W Structure-Preserving Algorithms for Oscillatory Differential Equations II, 53–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48156-1_3.
Pełny tekst źródłaWu, Xinyuan, Kai Liu i Wei Shi. "Error Analysis of Explicit TSERKN Methods for Highly Oscillatory Systems". W Structure-Preserving Algorithms for Oscillatory Differential Equations II, 175–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48156-1_8.
Pełny tekst źródłaWu, Xinyuan, i Bin Wang. "Symplectic Approximations for Efficiently Solving Semilinear KG Equations". W Geometric Integrators for Differential Equations with Highly Oscillatory Solutions, 351–91. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0147-7_11.
Pełny tekst źródłaWu, Xinyuan, Kai Liu i Wei Shi. "Highly Accurate Explicit Symplectic ERKN Methods for Multi-frequency Oscillatory Hamiltonian Systems". W Structure-Preserving Algorithms for Oscillatory Differential Equations II, 193–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48156-1_9.
Pełny tekst źródłaWu, Xinyuan, i Bin Wang. "Energy-Preserving Schemes for High-Dimensional Nonlinear KG Equations". W Geometric Integrators for Differential Equations with Highly Oscillatory Solutions, 263–97. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0147-7_9.
Pełny tekst źródłaWu, Xinyuan, i Bin Wang. "Linearly-Fitted Conservative (Dissipative) Schemes for Nonlinear Wave Equations". W Geometric Integrators for Differential Equations with Highly Oscillatory Solutions, 235–61. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0147-7_8.
Pełny tekst źródłaBensoussan, Alain. "Homogenization for Non Linear Elliptic Equations with Random Highly Oscillatory Coefficients". W Partial Differential Equations and the Calculus of Variations, 93–133. Boston, MA: Birkhäuser Boston, 1989. http://dx.doi.org/10.1007/978-1-4684-9196-8_5.
Pełny tekst źródłaStreszczenia konferencji na temat "Autonomous and highly oscillatory differential equations"
Kuo, Chi-Wei, i C. Steve Suh. "On Controlling Non-Autonomous Time-Delay Feedback Systems". W ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51128.
Pełny tekst źródłaFeng, Dehua, Frederick Ferguson, Yang Gao i Xinru Niu. "Investigating the Start-Up Structures and Their Evolution Within an Under-Expanded Jet Flows". W ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-113767.
Pełny tekst źródła