Gotowa bibliografia na temat „Augmented Reality applications”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Augmented Reality applications”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Augmented Reality applications"
Sahin, Damla, i Abdullah Togay. "Augmented reality applications in product design process". New Trends and Issues Proceedings on Humanities and Social Sciences 2, nr 1 (19.02.2016): 115–25. http://dx.doi.org/10.18844/gjhss.v2i1.288.
Pełny tekst źródłaYıldız, Ezgi Pelin. "Augmented reality research and applications in education". New Trends and Issues Proceedings on Humanities and Social Sciences 2, nr 1 (28.06.2017): 238–43. http://dx.doi.org/10.18844/prosoc.v2i11.1927.
Pełny tekst źródłaKoubek, Tomáš, David Procházka i Jiří Šťastný. "Augmented reality services". Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 61, nr 7 (2013): 2337–42. http://dx.doi.org/10.11118/actaun201361072337.
Pełny tekst źródłaMakolkina, M., i A. Koucheryavy. "AUGMENTED REALITY APPLICATIONS CLASSIFICATION". Telecom IT 8, nr 1 (kwiecień 2020): 11–21. http://dx.doi.org/10.31854/2307-1303-2020-8-1-11-21.
Pełny tekst źródłaSahasrabhojane, Mr Prathamesh Shrinivas. "Augmented Reality Media (Ed.AR)". International Journal for Research in Applied Science and Engineering Technology 9, nr VI (20.06.2021): 2060–62. http://dx.doi.org/10.22214/ijraset.2021.35451.
Pełny tekst źródłaYildiz, Ezgi Pelin. "Augmented Reality Applications in Education: Arloopa Application Example". Higher Education Studies 12, nr 2 (18.03.2022): 47. http://dx.doi.org/10.5539/hes.v12n2p47.
Pełny tekst źródłaDeolekar, Vaishnavi D., i Pratibha M. Deshmukh. "Case Study of Augmented Reality Applications in Medical Field". International Journal of Trend in Scientific Research and Development Volume-2, Issue-4 (30.06.2018): 2691–94. http://dx.doi.org/10.31142/ijtsrd15714.
Pełny tekst źródłaCardoso, Ava Linda. "Augmented Reality". International Journal of Engineering and Management Sciences 4, nr 3 (9.09.2019): 1–9. http://dx.doi.org/10.21791/ijems.2019.3.1.
Pełny tekst źródłaBetts, B. "Software reviews: Augmented reality applications". Engineering & Technology 7, nr 5 (1.06.2012): 92–93. http://dx.doi.org/10.1049/et.2012.0526.
Pełny tekst źródłaPiatykop, Olena, Olha Pronina, Iryna Tymofieieva i Ihor Palii. "Early literacy with augmented reality". Educational Dimension 58 (14.06.2022): 131–48. http://dx.doi.org/10.31812/educdim.4491.
Pełny tekst źródłaRozprawy doktorskie na temat "Augmented Reality applications"
Drews, Timothy. "Shared augmented reality: a framework for networked augmented reality applications". Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119674.
Pełny tekst źródłaDans cette thèse, nous détaillons le développement d'une architecture logicielle dédiée à réalité augmentée en réseau. Nous explorons plusieurs procédés de la vision numérique tels que la détection et suivi de surfaces planes et la localisation spatiale à partir de plusieurs capteurs et discutons de la conception de notre système. Cette thèse se concentre principalement sur la combination d'information sensorielle provenant de plusieurs sources. Notre technique utilise une nouvelle extension du filtre de Kalman qui exploite la structure des rotations. Nous offrons une dérivation extensive de cette formulation et nous validons cette approche d'une part par des données simulées mais aussi par des données réelles obtenues par un système de capture de mouvement.
Di, Capua Massimiliano. "Augmented reality for space applications". College Park, Md.: University of Maryland, 2008. http://hdl.handle.net/1903/8599.
Pełny tekst źródłaThesis research directed by: Dept. of Aerospace Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Häger, Ellen. "Enhanced Immersion in Augmented Reality Applications". Thesis, Linköpings universitet, Institutionen för systemteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-145217.
Pełny tekst źródłaLöfvendahl, Björn. "Augmented Reality Applications for Industrial Robots". Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-87146.
Pełny tekst źródłaMichel, Thibaud. "On mobile augmented reality applications based on geolocation". Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM068/document.
Pełny tekst źródłaApplications for augmented reality can be designed in various ways, but few take advantage of geolocation.However, nowadays, with the many cheap sensors embedded in smartphones and tablets, using geolocation for augmented reality (Geo AR) seems to be very promising.In this work, we have contributed on several aspects of Geo AR: estimation of device positioning and attitude, and the impact of these estimations on the rendering of virtual information.In a first step, we focused on smartphone attitude estimation.We proposed the first benchmark using a motion lab with a high precision for the purpose of comparing and evaluating filters from the literature on a common basis.This allowed us to provide the first in-depth comparative analysis in this context.In particular, we focused on typical motions of smartphones when carried by pedestrians.Furthermore, we proposed a new technique for limiting the impact of magnetic perturbations with any attitude estimation algorithm used in this context.We showed how our technique compares and improves over previous works.In a second step, we studied the estimation of the smartphone's position when the device is held by a pedestrian.Altough many earlier works focused on evaluation of localisation systems, it remains very difficult to find a benchmark to compare technologies in the setting of a commodity smartphone. Once again, we proposed a novel benchmark to analyse localisation technologies including WiFi fingerprinting, WiFi trilateration, SHS (Step and Heading System) and map-matching.In a third step, we proposed a method for characterizing the impact of attitude and position estimations on the rendering of virtual features.This made it possible to identify criteria to better understand the limits of Geo AR for different use cases.We finally proposed a framework to facilitate the design of Geo AR applications.We show how geodata can be used for AR applications.We proposed a new semantics that extends the data structures of OpenStreetMap.We built a viewer to display virtual elements over the camera livestream.The framework integrates modules for geolocation, attitude estimation, POIs management, geofencing, spatialized audio, 2.5D rendering and AR.Three Geo AR applications have been implemented using this framework.TyrAr is an application to display information on mountain summits and cities around the user.AmiAr allows one to monitor lights, shutters, tv in a smart appartment.Venturi Y3 is an AR-Tour of Grenoble with audio description and experiences
Taylor, Simon John. "Fast object localisation for mobile augmented reality applications". Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610762.
Pełny tekst źródłaYan, Yongzhe. "Deep Face Analysis for Aesthetic Augmented Reality Applications". Thesis, Université Clermont Auvergne (2017-2020), 2020. http://www.theses.fr/2020CLFAC011.
Pełny tekst źródłaPrecise and robust facial component detection is of great importance for the good user experience in aesthetic augmented reality applications such as virtual make-up and virtual hair dying. In this context, this thesis addresses the problem of facial component detection via facial landmark detection and face parsing. The scope of this thesis is limited to deep learning-based models.The first part of this thesis addresses the problem of facial landmark detection. In this direction, we propose three contributions. For the first contribution, we aim at improving the precision of the detection. To improve the precision to pixel-level, we propose a coarse-to-fine framework which leverages the detail information on the low-level feature maps. We train different stages with different loss functions, among which we propose a boundary-aware loss that forces the predicted landmarks to stay on the boundary. For the second contribution in facial landmark detection, we improve the robustness of facial landmark detection. We propose 2D Wasserstein loss to integrate additional geometric information during training. Moreover, we propose several modifications to the conventional evaluation metrics for model robustness.To provide a new perspective for facial landmark detection, we present a third contribution on exploring a novel tool to illustrate the relationship between the facial landmarks. We study the Canonical Correlation Analysis (CCA) of the landmark coordinates. Two applications are introduced based on this tool: (1) the interpretation of different facial landmark detection models (2) a novel weakly-supervised learning method that allows to considerably reduce the manual effort for dense landmark annotation.The second part of this thesis tackles the problem of face parsing. We present two contributions in this part. For the first contribution, we present a framework for hair segmentation with a shape prior to enhance the robustness against the cluttered background. Additionally, we propose a spatial attention module attached to this framework, to improve the output of the hair boundary. For the second contribution in this part, we present a fast face parsing framework for mobile phones, which leverages temporal consistency to yield a more robust output mask. The implementation of this framework runs in real-time on an iPhone X
Mahmood, Zahid. "Enhanced Augmented Reality Framework for Sports Entertainment Applications". Diss., North Dakota State University, 2015. http://hdl.handle.net/10365/25324.
Pełny tekst źródłaCOMSATS Institute of Information Technology
Head-Mears, James Bradley. "Accurate wide-area tracking for architectural, engineering and surveying applications". Thesis, University of Canterbury. HIT Lab NZ, 2013. http://hdl.handle.net/10092/11052.
Pełny tekst źródłaLin, Owen. "The development of network enabled augmented reality mobile applications". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61171.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (p. 59).
In this thesis, I designed, implemented, and evaluated network-enabled augmented reality mobile applications by extending an implementation of the MITAR iPhone client designed by the Scheller Teacher Education Program. In particular, I designed a multiplayer version of the client, which allows multiple users to interact with each other in a single game across multiple handsets and multiple platforms, and a data collection service that allows users to log media (such as pictures and text) throughout the duration of their game. The end result is an augmented reality client that fully takes advantage of the ubiquitous network connectivity offered by most modern mobile handsets.
by Owen Lin.
M.Eng.
Książki na temat "Augmented Reality applications"
Shumaker, Randall, i Stephanie Lackey, red. Virtual, Augmented and Mixed Reality. Applications of Virtual and Augmented Reality. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07464-1.
Pełny tekst źródłaOng, S. K., i A. Y. C. Nee, red. Virtual and Augmented Reality Applications in Manufacturing. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3873-0.
Pełny tekst źródłaOng, S. K. Virtual and Augmented Reality Applications in Manufacturing. London: Springer London, 2004.
Znajdź pełny tekst źródła1969-, Ong S. K., i Nee, A. Y. C. 1948-, red. Virtual and augmented reality applications in manufacturing. New York: Springer, 2004.
Znajdź pełny tekst źródłaChang, Maiga, Wu-Yuin Hwang, Ming-Puu Chen i Wolfgang Müller, red. Edutainment Technologies. Educational Games and Virtual Reality/Augmented Reality Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23456-9.
Pełny tekst źródłaShumaker, Randall, red. Virtual, Augmented and Mixed Reality. Systems and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39420-1.
Pełny tekst źródłaChen, Jessie Y. C., i Gino Fragomeni, red. Virtual, Augmented and Mixed Reality. Applications and Case Studies. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21565-1.
Pełny tekst źródłaChen, Jessie Y. C., i Gino Fragomeni, red. Virtual, Augmented and Mixed Reality. Industrial and Everyday Life Applications. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49698-2.
Pełny tekst źródłaHassanien, Aboul Ella, Deepak Gupta, Ashish Khanna i Adam Slowik, red. Virtual and Augmented Reality for Automobile Industry: Innovation Vision and Applications. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94102-4.
Pełny tekst źródłaChen, Jessie Y. C., i Gino Fragomeni, red. Virtual, Augmented and Mixed Reality: Applications in Education, Aviation and Industry. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06015-1.
Pełny tekst źródłaCzęści książek na temat "Augmented Reality applications"
Peddie, Jon. "Key Applications". W Augmented Reality, 87–164. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54502-8_6.
Pełny tekst źródłaPeddie, Jon. "Key Applications". W Augmented Reality, 135–225. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-32581-6_6.
Pełny tekst źródłaMihelj, Matjaž, Domen Novak i Samo Begus. "Augmented Reality". W Virtual Reality Technology and Applications, 195–204. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6910-6_8.
Pełny tekst źródłaArnaldi, Bruno, Stéphane Cotin, Nadine Couture, Jean-Louis Dautin, Valérie Gouranton, François Gruson i Domitile Lourdeaux. "New Applications". W Virtual Reality and Augmented Reality, 1–71. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119341031.ch1.
Pełny tekst źródłaSood, Raghav. "Applications of Augmented Reality". W Pro Android Augmented Reality, 1–12. Berkeley, CA: Apress, 2012. http://dx.doi.org/10.1007/978-1-4302-3946-8_1.
Pełny tekst źródłaSingh, Gurjinder, Anjali Kataria, Shinnu Jangra, Rubina Dutta, Archana Mantri, Jasminder Kaur Sandhu i Thennarasan Sabapathy. "Augmented Reality and Virtual Reality". W Smart Distributed Embedded Systems for Healthcare Applications, 93–118. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003254119-7.
Pełny tekst źródłaBonenberger, Yannic, Jason Rambach, Alain Pagani i Didier Stricker. "Universal Web-Based Tracking for Augmented Reality Applications". W Virtual Reality and Augmented Reality, 18–27. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01790-3_2.
Pełny tekst źródłaKühn-Kauffeldt, Marina, i Jörg Böttcher. "Open Source Augmented Reality Applications for Small Manufacturing Businesses". W Augmented Reality and Virtual Reality, 243–51. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37869-1_20.
Pełny tekst źródłaLivingston, Mark A., Lawrence J. Rosenblum, Dennis G. Brown, Gregory S. Schmidt, Simon J. Julier, Yohan Baillot, J. Edward Swan, Zhuming Ai i Paul Maassel. "Military Applications of Augmented Reality". W Handbook of Augmented Reality, 671–706. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0064-6_31.
Pełny tekst źródłaMay, Michael. "Wayfinding, Ships and Augmented Reality". W Virtual Applications, 212–33. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3746-7_10.
Pełny tekst źródłaStreszczenia konferencji na temat "Augmented Reality applications"
Lin, Chien-Liang, Yu-Zheng Su, Min-Wei Hung i Kuo-Cheng Huang. "Augmented reality system". W SPIE Optical Engineering + Applications, redaktor Andrew G. Tescher. SPIE, 2010. http://dx.doi.org/10.1117/12.860252.
Pełny tekst źródłaBillinghurst, Mark, i Raphael Grasset. "Developing augmented reality applications". W ACM SIGGRAPH ASIA 2008 courses. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1508044.1508048.
Pełny tekst źródłaAzuma, Ronald T. "Making Augmented Reality a Reality". W 3D Image Acquisition and Display: Technology, Perception and Applications. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/3d.2017.jtu1f.1.
Pełny tekst źródłaKeesung Kim, Hwansoo Lee, Jiyeon Hwang i Hangjung Zo. "Understanding augmented reality applications continuance". W 2013 International Conference on ICT Convergence (ICTC). IEEE, 2013. http://dx.doi.org/10.1109/ictc.2013.6675336.
Pełny tekst źródłaQiu, Hang, Fawad Ahmad, Ramesh Govindan, Marco Gruteser, Fan Bai i Gorkem Kar. "Augmented Vehicular Reality". W HotMobile '17: The 18th International Workshop on Mobile Computing Systems and Applications. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3032970.3032976.
Pełny tekst źródłaJenkins, Jeffrey, Christopher Frenchi i Harold Szu. "Telescopic multi-resolution augmented reality". W SPIE Sensing Technology + Applications, redaktorzy Harold H. Szu i Liyi Dai. SPIE, 2014. http://dx.doi.org/10.1117/12.2051255.
Pełny tekst źródłaPark, Andrew J., i Rick N. Kazman. "Augmented reality for mining teleoperation". W Photonics for Industrial Applications, redaktor Hari Das. SPIE, 1995. http://dx.doi.org/10.1117/12.197304.
Pełny tekst źródłaSoomro, Shoaib R., Erdem Ulusoy i Hakan Urey. "Wearable Augmented Reality Displays". W 3D Image Acquisition and Display: Technology, Perception and Applications. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/3d.2017.dm4f.2.
Pełny tekst źródłaMirza, Tabasum, Neha Tuli i Archana Mantri. "Virtual Reality, Augmented Reality, and Mixed Reality Applications: Present Scenario". W 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). IEEE, 2022. http://dx.doi.org/10.1109/icacite53722.2022.9823482.
Pełny tekst źródłaMartins, Valeria Farinazzo, Leandro Valdeviesso Soares, Vitor Barbosa Mattos, Eduardo Luiz Makihara, Renato Nakahishi Pinto i Marcelo de Paiva Guimaraes. "Usability metrics for augmented reality applications". W XXXVIII Latin America Conference on Informatics (CLEI 2012). IEEE, 2012. http://dx.doi.org/10.1109/clei.2012.6427125.
Pełny tekst źródłaRaporty organizacyjne na temat "Augmented Reality applications"
Seidametova, Zarema S., Zinnur S. Abduramanov i Girey S. Seydametov. Using augmented reality for architecture artifacts visualizations. [б. в.], lipiec 2021. http://dx.doi.org/10.31812/123456789/4626.
Pełny tekst źródłaKanivets, Oleksandr V., Irina М. Kanivets, Natalia V. Kononets, Tetyana М. Gorda i Ekaterina O. Shmeltser. Development of mobile applications of augmented reality for projects with projection drawings. [б. в.], luty 2020. http://dx.doi.org/10.31812/123456789/3745.
Pełny tekst źródłaKharchenko, Yuliya V., Olena M. Babenko i Arnold E. Kiv. Using Blippar to create augmented reality in chemistry education. CEUR Workshop Proceedings, lipiec 2021. http://dx.doi.org/10.31812/123456789/4630.
Pełny tekst źródłaOleksiuk, Vasyl P., i Olesia R. Oleksiuk. Exploring the potential of augmented reality for teaching school computer science. [б. в.], listopad 2020. http://dx.doi.org/10.31812/123456789/4404.
Pełny tekst źródłaDyulicheva, Yulia Yu, Yekaterina A. Kosova i Aleksandr D. Uchitel. he augmented reality portal and hints usage for assisting individuals with autism spectrum disorder, anxiety and cognitive disorders. [б. в.], listopad 2020. http://dx.doi.org/10.31812/123456789/4412.
Pełny tekst źródłaVakaliuk, Tetiana A., i Svitlana I. Pochtoviuk. Analysis of tools for the development of augmented reality technologies. [б. в.], lipiec 2021. http://dx.doi.org/10.31812/123456789/4625.
Pełny tekst źródłaBabkin, Vladyslav V., Viktor V. Sharavara, Volodymyr V. Sharavara, Vladyslav V. Bilous, Andrei V. Voznyak i Serhiy Ya Kharchenko. Using augmented reality in university education for future IT specialists: educational process and student research work. CEUR Workshop Proceedings, lipiec 2021. http://dx.doi.org/10.31812/123456789/4632.
Pełny tekst źródłaNezhyva, Liudmyla L., Svitlana P. Palamar i Oksana S. Lytvyn. Perspectives on the use of augmented reality within the linguistic and literary field of primary education. [б. в.], listopad 2020. http://dx.doi.org/10.31812/123456789/4415.
Pełny tekst źródłaPalamar, Svitlana P., Ganna V. Bielienka, Tatyana O. Ponomarenko, Liudmyla V. Kozak, Liudmyla L. Nezhyva i Andrei V. Voznyak. Formation of readiness of future teachers to use augmented reality in the educational process of preschool and primary education. CEUR Workshop Proceedings, lipiec 2021. http://dx.doi.org/10.31812/123456789/4636.
Pełny tekst źródłaPetrovych, Olha B., Alla P. Vinnichuk, Viktor P. Krupka, Iryna A. Zelenenka i Andrei V. Voznyak. The usage of augmented reality technologies in professional training of future teachers of Ukrainian language and literature. CEUR Workshop Proceedings, lipiec 2021. http://dx.doi.org/10.31812/123456789/4635.
Pełny tekst źródła