Gotowa bibliografia na temat „Augmented Krylov Model Order Reduction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Augmented Krylov Model Order Reduction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Augmented Krylov Model Order Reduction"
Kerfriden, P., P. Gosselet, S. Adhikari i S. P. A. Bordas. "Bridging proper orthogonal decomposition methods and augmented Newton–Krylov algorithms: An adaptive model order reduction for highly nonlinear mechanical problems". Computer Methods in Applied Mechanics and Engineering 200, nr 5-8 (styczeń 2011): 850–66. http://dx.doi.org/10.1016/j.cma.2010.10.009.
Pełny tekst źródłaZimmerling, Jörn, Vladimir Druskin, Mikhail Zaslavsky i Rob F. Remis. "Model-order reduction of electromagnetic fields in open domains". GEOPHYSICS 83, nr 2 (1.03.2018): WB61—WB70. http://dx.doi.org/10.1190/geo2017-0507.1.
Pełny tekst źródłaFreund, Roland W. "Model reduction methods based on Krylov subspaces". Acta Numerica 12 (maj 2003): 267–319. http://dx.doi.org/10.1017/s0962492902000120.
Pełny tekst źródłaMichiels, Wim, Elias Jarlebring i Karl Meerbergen. "Krylov-Based Model Order Reduction of Time-delay Systems". SIAM Journal on Matrix Analysis and Applications 32, nr 4 (październik 2011): 1399–421. http://dx.doi.org/10.1137/100797436.
Pełny tekst źródłaOlsson, K. Henrik A., i Axel Ruhe. "Rational Krylov for eigenvalue computation and model order reduction". BIT Numerical Mathematics 46, S1 (9.09.2006): 99–111. http://dx.doi.org/10.1007/s10543-006-0085-9.
Pełny tekst źródłaBazaz, Mohammad Abid, Mashuq un Nabi i S. Janardhanan. "Automated and efficient order selection in Krylov-based model order reduction". International Journal of Modelling, Identification and Control 18, nr 4 (2013): 332. http://dx.doi.org/10.1504/ijmic.2013.053538.
Pełny tekst źródłaRadić-Weissenfeld, Lj, S. Ludwig, W. Mathis i W. John. "Model order reduction of linear time invariant systems". Advances in Radio Science 6 (26.05.2008): 129–32. http://dx.doi.org/10.5194/ars-6-129-2008.
Pełny tekst źródłaLi, Bin, Liang Bao, Yiqin Lin i Yimin Wei. "Model-order reduction ofkth order MIMO dynamical systems using blockkth order Krylov subspaces". International Journal of Computer Mathematics 88, nr 1 (styczeń 2011): 150–62. http://dx.doi.org/10.1080/00207160903353319.
Pełny tekst źródłaMOHAMED, K., A. MEHDI i M. ABDELKADER. "AN ITERATIVE MODEL ORDER REDUCTION METHOD FOR LARGE-SCALE DYNAMICAL SYSTEMS". ANZIAM Journal 59, nr 1 (5.04.2017): 115–33. http://dx.doi.org/10.1017/s1446181117000049.
Pełny tekst źródłaGuan, Le, Jia Li Gao, Zhi Wen Wang, Guo Qing Zhang i Jin Kui Chu. "A Refined Arnoldi Algorithm Based Krylov Subspace Technique for MEMS Model Order Reduction". Key Engineering Materials 503 (luty 2012): 260–65. http://dx.doi.org/10.4028/www.scientific.net/kem.503.260.
Pełny tekst źródłaRozprawy doktorskie na temat "Augmented Krylov Model Order Reduction"
Olsson, K. Henrik A. "Model Order Reduction with Rational Krylov Methods". Doctoral thesis, Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-401.
Pełny tekst źródłaMaciver, Mark Alasdair. "Electromagnetic characterisation of structures using Krylov subspace model order reduction methods". Thesis, University of Glasgow, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.433619.
Pełny tekst źródłaAgbaje, Oluwaleke Abimbola. "Krylov subspace model order reduction for nonlinear and bilinear control systems". Thesis, Coventry University, 2016. http://curve.coventry.ac.uk/open/items/62c3a18c-4d39-4397-9684-06d77b9cd187/1.
Pełny tekst źródłaYan, Boyuan. "Advanced non-Krylov subspace model order reduction techniques for interconnect circuits". Diss., [Riverside, Calif.] : University of California, Riverside, 2009. http://proquest.umi.com/pqdweb?index=0&did=1957340951&SrchMode=2&sid=4&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1268670715&clientId=48051.
Pełny tekst źródłaIncludes abstract. Available via ProQuest Digital Dissertations. Title from first page of PDF file (viewed March 12, 2010). Includes bibliographical references (p. 122-126). Also issued in print.
Barkouki, Houda. "Rational Lanczos-type methods for model order reduction". Thesis, Littoral, 2016. http://www.theses.fr/2016DUNK0440/document.
Pełny tekst źródłaNumerical solution of dynamical systems have been a successful means for studying complex physical phenomena. However, in large-scale setting, the system dimension makes the computations infeasible due to memory and time limitations, and ill-conditioning. The remedy of this problem is model reductions. This dissertations focuses on projection methods to efficiently construct reduced order models for large linear dynamical systems. Especially, we are interesting by projection onto unions of Krylov subspaces which lead to a class of reduced order models known as rational interpolation. Based on this theoretical framework that relate Krylov projection to rational interpolation, four rational Lanczos-type algorithms for model reduction are proposed. At first, an adaptative rational block Lanczos-type method for reducing the order of large scale dynamical systems is introduced, based on a rational block Lanczos algorithm and an adaptive approach for choosing the interpolation points. A generalization of the first algorithm is also given where different multiplicities are consider for each interpolation point. Next, we proposed another extension of the standard Krylov subspace method for Multiple-Input Multiple-Output (MIMO) systems, which is the global Krylov subspace, and we obtained also some equations that describe this process. Finally, an extended block Lanczos method is introduced and new algebraic properties for this algorithm are also given. The accuracy and the efficiency of all proposed algorithms when applied to model order reduction problem are tested by means of different numerical experiments that use a collection of well known benchmark examples
Wyatt, Sarah Alice. "Issues in Interpolatory Model Reduction: Inexact Solves, Second-order Systems and DAEs". Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/27668.
Pełny tekst źródłaPh. D.
Hijazi, Abdallah. "Implementation of harmonic balance reduce model order equation". Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0139/document.
Pełny tekst źródłaMOR recently became a well-known research field, due to the interest that it shows in reducing the system, which saves time, memory, and CPU cost for CAD tools. This field contains two branches, linear and nonlinear MOR, the linear MOR is a mature domain with well-established theory and numerical techniques. Meanwhile, nonlinear MOR domain is still stammering, and so far it didn’t show good and successful results in electrical circuit simulation. Some improvements however started to pop-up recently, and research is still going on this field because of the help that it can give to the contemporary simulators, especially with the growth of the electronic chips in terms of size and complexity due to industrial demands towards integrating systems on the same chip. A significant contribution in the MOR technique of HB solution has been proposed a decade ago by E. Gad and M. Nakhla. The technique has shown to provide a substantial system dimension reduction while preserving the precision of the output in steady state analysis. This MOR method uses the technique of projection via Krylov, and it preserves the passivity of the system. However, it suffers a number of important limitations in the construction of the pre-conditioner matrix which is ought to reduce the system. The main limitation is the necessity for explicit factorization as a power series of the equation of the nonlinear devices. This makes the technique difficult to apply in general purpose simulator conditions. This thesis will review the aspects of the nonlinear model order reduction technique for harmonic balance equations, and it will study solutions to overcome the above mentioned limitations, in particular using numerical differentiation approaches
Panzer, Heiko [Verfasser]. "Model Order Reduction by Krylov Subspace Methods with Global Error Bounds and Automatic Choice of Parameters / Heiko Panzer". München : Verlag Dr. Hut, 2014. http://d-nb.info/1063222176/34.
Pełny tekst źródłaPanzer, Heiko K. F. [Verfasser], Boris [Akademischer Betreuer] Lohmann i Athanasios C. [Akademischer Betreuer] Antoulas. "Model Order Reduction by Krylov Subspace Methods with Global Error Bounds and Automatic Choice of Parameters / Heiko K. F. Panzer. Gutachter: Athanasios C. Antoulas ; Boris Lohmann. Betreuer: Boris Lohmann". München : Universitätsbibliothek der TU München, 2014. http://d-nb.info/1064976263/34.
Pełny tekst źródłaPanzer, Heiko [Verfasser], Boris [Akademischer Betreuer] Lohmann i Athanasios C. [Akademischer Betreuer] Antoulas. "Model Order Reduction by Krylov Subspace Methods with Global Error Bounds and Automatic Choice of Parameters / Heiko K. F. Panzer. Gutachter: Athanasios C. Antoulas ; Boris Lohmann. Betreuer: Boris Lohmann". München : Universitätsbibliothek der TU München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20140916-1207822-0-0.
Pełny tekst źródłaCzęści książek na temat "Augmented Krylov Model Order Reduction"
Heres, P. J., i W. H. A. Schilders. "Orthogonalisation in Krylov Subspace Methodsfor Model Order Reduction". W Scientific Computing in Electrical Engineering, 39–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-32862-9_6.
Pełny tekst źródłaSreekumar, Harikrishnan K., Rupert Ullmann, Stefan Sicklinger i Sabine C. Langer. "Efficient Krylov Subspace Techniques for Model Order Reduction of Automotive Structures in Vibroacoustic Applications". W Model Reduction of Complex Dynamical Systems, 259–82. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72983-7_12.
Pełny tekst źródłaJehle, Jonas Siegfried, Luca Mechelli i Stefan Volkwein. "POD-Based Augmented Lagrangian Method for State Constrained Heat-Convection Phenomena". W IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018, 127–39. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21013-7_9.
Pełny tekst źródłaStreszczenia konferencji na temat "Augmented Krylov Model Order Reduction"
Kumar, Neeraj, K. J. Vinoy i S. Gopalakrishnan. "Augmented Krylov model order reduction for finite element approximation of plane wave scattering problems". W 2013 IEEE MTT-S International Microwave and RF Conference. IEEE, 2013. http://dx.doi.org/10.1109/imarc.2013.6777714.
Pełny tekst źródłaAmin, N. Mohd, i R. R. Krisnamoorthy. "Krylov Subspace model order reduction for FE seismic analysis". W 2012 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA). IEEE, 2012. http://dx.doi.org/10.1109/isbeia.2012.6422877.
Pełny tekst źródłaGarrido, S. Sebastian E., i Roy A. McCann. "Krylov subspace based model order reduction of distribution networks". W 2017 North American Power Symposium (NAPS). IEEE, 2017. http://dx.doi.org/10.1109/naps.2017.8107214.
Pełny tekst źródłaCong Teng i Xia Li. "New algorithms for second order model reduction based on Krylov projections". W 2011 International Conference on Electric Information and Control Engineering (ICEICE). IEEE, 2011. http://dx.doi.org/10.1109/iceice.2011.5778209.
Pełny tekst źródłaNabi, M., M. A. Bazaz i P. Guha. "Krylov-subspace based model order reduction for field-circuit coupled systems". W 2009 European Conference on Circuit Theory and Design (ECCTD 2009). IEEE, 2009. http://dx.doi.org/10.1109/ecctd.2009.5275034.
Pełny tekst źródłaYetkin, E. Fatih, i Hasan Dag. "Parallel implementation of iterative rational Krylov methods for model order reduction". W 2009 Fifth International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control. IEEE, 2009. http://dx.doi.org/10.1109/icsccw.2009.5379421.
Pełny tekst źródłaWolf, Thomas, Heiko K. F. Panzer i Boris Lohmann. "ℌ2 pseudo-optimality in model order reduction by Krylov subspace methods". W 2013 European Control Conference (ECC). IEEE, 2013. http://dx.doi.org/10.23919/ecc.2013.6669585.
Pełny tekst źródłaCao, Xingang, Joseph Maubach, Siep Weiland i Wil Schilders. "A Novel Krylov Method for Model Order Reduction of Quadratic Bilinear Systems". W 2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018. http://dx.doi.org/10.1109/cdc.2018.8619575.
Pełny tekst źródłaSalimbahrami, Behnam, Rudy Eid i Boris Lohmann. "Model reduction by second order Krylov subspaces: Extensions, stability and proportional damping". W 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control. IEEE, 2006. http://dx.doi.org/10.1109/cacsd-cca-isic.2006.4777115.
Pełny tekst źródłaSalimbahrami, Behnam, Rudy Eid i Boris Lohmann. "Model Reduction by Second Order Krylov Subspaces: Extensions, Stability and Proportional Damping". W 2006 IEEE Conference on Computer-Aided Control Systems Design. IEEE, 2006. http://dx.doi.org/10.1109/cacsd.2006.285535.
Pełny tekst źródła