Gotowa bibliografia na temat „Audio data mining”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Audio data mining”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Audio data mining"
Xu, Shasha. "Effective Graph Mining for Educational Data Mining and Interest Recommendation". Applied Bionics and Biomechanics 2022 (12.08.2022): 1–5. http://dx.doi.org/10.1155/2022/7610124.
Pełny tekst źródłaXu, Yanping, i Sen Xu. "A Clustering Analysis Method for Massive Music Data". Modern Electronic Technology 5, nr 1 (6.05.2021): 24. http://dx.doi.org/10.26549/met.v5i1.6763.
Pełny tekst źródłaTHURAISINGHAM, BHAVANI. "MANAGING AND MINING MULTIMEDIA DATABASES". International Journal on Artificial Intelligence Tools 13, nr 03 (wrzesień 2004): 739–59. http://dx.doi.org/10.1142/s0218213004001776.
Pełny tekst źródłaWang, Fang. "The Effect of Multimedia Teaching Model of Music Course in Colleges and Universities Based on Classroom Audio Data Mining Technology". Tobacco Regulatory Science 7, nr 5 (30.09.2021): 4520–31. http://dx.doi.org/10.18001/trs.7.5.2.18.
Pełny tekst źródłaPaul, Prantosh K., i K. S. Shivraj. "Multimedia Data Mining and its Integration in Information Sector and Foundation: An Overview". Asian Journal of Computer Science and Technology 3, nr 1 (5.05.2014): 24–28. http://dx.doi.org/10.51983/ajcst-2014.3.1.1729.
Pełny tekst źródłaYe, Jiaxing, Takumi Kobayashi, Xiaoyan Wang, Hiroshi Tsuda i Masahiro Murakawa. "Audio Data Mining for Anthropogenic Disaster Identification: An Automatic Taxonomy Approach". IEEE Transactions on Emerging Topics in Computing 8, nr 1 (1.01.2020): 126–36. http://dx.doi.org/10.1109/tetc.2017.2700843.
Pełny tekst źródłaLi, Xaiomeng. "Construction of Teachers Performance Evaluation Index System for Data-Driven Smart Classrooms in Secondary Schools". SHS Web of Conferences 190 (2024): 03010. http://dx.doi.org/10.1051/shsconf/202419003010.
Pełny tekst źródłaShin, Sanghyun, Abhishek Vaidya i Inseok Hwang. "Helicopter Cockpit Audio Data Analysis to Infer Flight State Information". Journal of the American Helicopter Society 65, nr 3 (1.07.2020): 1–8. http://dx.doi.org/10.4050/jahs.65.032001.
Pełny tekst źródłaFaridzi, Salman Al, Faza Shafa Azizah, Faizal Mustafa, Azzahra Nindya Putri, Gilang Ramadhika, Fauzan Rizky Aditya, Ridha Sherli Fadilah i in. "PENGOLAHAN DATA: PEMAHAMAN GEMPA BUMI DI INDONESIA MELALUI PENDEKATAN DATA MINING". Jurnal Pengabdian Kolaborasi dan Inovasi IPTEKS 2, nr 1 (16.02.2024): 262–70. http://dx.doi.org/10.59407/jpki2.v2i1.506.
Pełny tekst źródłaBhoyar, Sanjay, Punam Bhoyar, Anuj Kumar i Prabha Kiran. "Enhancing applications of surveillance through multimedia data mining". Journal of Discrete Mathematical Sciences and Cryptography 27, nr 3 (2024): 1105–20. http://dx.doi.org/10.47974/jdmsc-1947.
Pełny tekst źródłaRozprawy doktorskie na temat "Audio data mining"
Levy, Marcel Andrew. "Ringermute an audio data mining toolkit /". abstract and full text PDF (free order & download UNR users only), 2005. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1433402.
Pełny tekst źródłaKohlsdorf, Daniel. "Data mining in large audio collections of dolphin signals". Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53968.
Pełny tekst źródłaThambiratnam, Albert J. K. "Acoustic keyword spotting in speech with applications to data mining". Thesis, Queensland University of Technology, 2005. https://eprints.qut.edu.au/37254/1/Albert_Thambiratnam_Thesis.pdf.
Pełny tekst źródłaFenet, Sébastien. "Empreintes audio et stratégies d'indexation associées pour l'identification audio à grande échelle". Thesis, Paris, ENST, 2013. http://www.theses.fr/2013ENST0051/document.
Pełny tekst źródłaN this work we give a precise definition of large scale audio identification. In particular, we make a distinction between exact and approximate matching. In the first case, the goal is to match two signals coming from one same recording with different post-processings. In the second case, the goal is to match two signals that are musically similar. In light of these definitions, we conceive and evaluate different audio-fingerprint models
Fenet, Sébastien. "Empreintes audio et stratégies d'indexation associées pour l'identification audio à grande échelle". Electronic Thesis or Diss., Paris, ENST, 2013. http://www.theses.fr/2013ENST0051.
Pełny tekst źródłaN this work we give a precise definition of large scale audio identification. In particular, we make a distinction between exact and approximate matching. In the first case, the goal is to match two signals coming from one same recording with different post-processings. In the second case, the goal is to match two signals that are musically similar. In light of these definitions, we conceive and evaluate different audio-fingerprint models
Ferroudj, Meriem. "Detection of rain in acoustic recordings of the environment using machine learning techniques". Thesis, Queensland University of Technology, 2015. https://eprints.qut.edu.au/82848/1/Meriem_Ferroudj_Thesis.pdf.
Pełny tekst źródłaBayle, Yann. "Apprentissage automatique de caractéristiques audio : application à la génération de listes de lecture thématiques". Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0087/document.
Pełny tekst źródłaThis doctoral dissertation presents, discusses and proposes tools for the automatic information retrieval in big musical databases.The main application is the supervised classification of musical themes to generate thematic playlists.The first chapter introduces the different contexts and concepts around big musical databases and their consumption.The second chapter focuses on the description of existing music databases as part of academic experiments in audio analysis.This chapter notably introduces issues concerning the variety and unequal proportions of the themes contained in a database, which remain complex to take into account in supervised classification.The third chapter explains the importance of extracting and developing relevant audio features in order to better describe the content of music tracks in these databases.This chapter explains several psychoacoustic phenomena and uses sound signal processing techniques to compute audio features.New methods of aggregating local audio features are proposed to improve song classification.The fourth chapter describes the use of the extracted audio features in order to sort the songs by themes and thus to allow the musical recommendations and the automatic generation of homogeneous thematic playlists.This part involves the use of machine learning algorithms to perform music classification tasks.The contributions of this dissertation are summarized in the fifth chapter which also proposes research perspectives in machine learning and extraction of multi-scale audio features
Wallace, Roy Geoffrey. "Fast and accurate phonetic spoken term detection". Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/39610/1/Roy_Wallace_Thesis.pdf.
Pełny tekst źródłaZiegler, Thomas. "Auswertung von Audit-Daten zur Optimierung von Workflows". [S.l. : s.n.], 2001. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB9386075.
Pełny tekst źródłaWang, Tian. "Effective Thermal Resistance of Commercial Buildings Using Data Analysis of Whole-Building Electricity Data". Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1586524438396894.
Pełny tekst źródłaKsiążki na temat "Audio data mining"
Baronas, Roberto, i Maria Inês Pagliarini Cox. Linguística popular: Folk linguistics : práticas, proposições e polêmicas - homenagem a Amadeu Amaral. Campinas, SP: Pontes, 2020.
Znajdź pełny tekst źródłaMaybury, Mark T. Multimedia Information Extraction: Advances in Video, Audio, and Imagery Analysis for Search, Data Mining, Surveillance and Authoring. IEEE Computer Society Press, 2012.
Znajdź pełny tekst źródłaMultimedia information extraction: Advances in video, audio, and imagery analysis for search, data mining, surveillance, and authoring. Hoboken, N.J: Wiley, 2012.
Znajdź pełny tekst źródłaMaybury, Mark T. Multimedia Information Extraction: Advances in Video, Audio, and Imagery Analysis for Search, Data Mining, Surveillance and Authoring. IEEE Computer Society Press, 2012.
Znajdź pełny tekst źródłaMaybury, Mark T. Multimedia Information Extraction: Advances in Video, Audio, and Imagery Analysis for Search, Data Mining, Surveillance and Authoring. IEEE Computer Society Press, 2012.
Znajdź pełny tekst źródłaMaybury, Mark T. Multimedia Information Extraction: Advances in Video, Audio, and Imagery Analysis for Search, Data Mining, Surveillance and Authoring. Wiley & Sons, Limited, John, 2012.
Znajdź pełny tekst źródłaFinancial management: Fiscal year 1992 audit of the Defense Cooperation Account : report to the Congress. Washington, D.C: The Office, 1993.
Znajdź pełny tekst źródłaCzęści książek na temat "Audio data mining"
Sai Tharun, A., K. Dhivakar i R. Nair Prashant. "Voice Data-Mining on Audio from Audio and Video Clips". W Smart Innovation, Systems and Technologies, 519–34. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7447-2_46.
Pełny tekst źródłaZheng, Meizhen, Peng Bai i Xiaodong Shi. "A Compact Phoneme-To-Audio Aligner for Singing Voice". W Advanced Data Mining and Applications, 183–97. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-46664-9_13.
Pełny tekst źródłaNguyen, Cong Phuong, Ngoc Yen Pham i Eric Castelli. "First Steps to an Audio Ontology-Based Classifier for Telemedicine". W Advanced Data Mining and Applications, 845–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11811305_92.
Pełny tekst źródłaLiu, Qingzhong, Andrew H. Sung i Mengyu Qiao. "Spectrum Steganalysis of WAV Audio Streams". W Machine Learning and Data Mining in Pattern Recognition, 582–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03070-3_44.
Pełny tekst źródłaBansal, Mohit, Satya Jeet Raj Upali i Sukesha Sharma. "Early Parkinson Disease Detection Using Audio Signal Processing". W Emerging Technologies in Data Mining and Information Security, 243–50. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4193-1_23.
Pełny tekst źródłaKubera, Elżbieta, i Alicja A. Wieczorkowska. "Mining Audio Data for Multiple Instrument Recognition in Classical Music". W New Frontiers in Mining Complex Patterns, 246–60. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08407-7_16.
Pełny tekst źródłaGao, Jie, Yanqing Sun, Hongbin Suo, Qingwei Zhao i Yonghong Yan. "WAPS: An Audio Program Surveillance System for Large Scale Web Data Stream". W Web Information Systems and Mining, 116–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-05250-7_13.
Pełny tekst źródłaPark, Dong-Chul, Yunsik Lee i Dong-Min Woo. "Classification of Audio Signals Using a Bhattacharyya Kernel-Based Centroid Neural Network". W Advances in Knowledge Discovery and Data Mining, 604–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01307-2_59.
Pełny tekst źródłaDas, Sanghamitra, Suchibrota Dutta, Debanjan Banerjee i Arijit Ghosal. "Classification of Bharatnatyam and Kathak Dance Form Through Audio Signal". W Emerging Technologies in Data Mining and Information Security, 671–79. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9774-9_62.
Pełny tekst źródłaMuhammad, Atta, i Sher Muhammad Daudpota. "Content Based Identification of Talk Show Videos Using Audio Visual Features". W Machine Learning and Data Mining in Pattern Recognition, 267–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41920-6_20.
Pełny tekst źródłaStreszczenia konferencji na temat "Audio data mining"
Tao, Yudong, Samantha G. Mitsven, Lynn K. Perry, Daniel S. Messinger i Mei-Ling Shyu. "Audio-Based Group Detection for Classroom Dynamics Analysis". W 2019 International Conference on Data Mining Workshops (ICDMW). IEEE, 2019. http://dx.doi.org/10.1109/icdmw.2019.00125.
Pełny tekst źródła"Improvement of Indexing Methods for Audio Fingerprinting Systems". W International Conference Data Mining, Civil and Mechanical Engineering. International Institute of Engineers, 2014. http://dx.doi.org/10.15242/iie.e0214053.
Pełny tekst źródłaRodrigues, João Pedro, i Emerson Paraiso. "From audio to information: Learning topics from audio transcripts". W Symposium on Knowledge Discovery, Mining and Learning. Sociedade Brasileira de Computação, 2020. http://dx.doi.org/10.5753/kdmile.2020.11967.
Pełny tekst źródłaHao, Yuan, Mohammad Shokoohi-Yekta, George Papageorgiou i Eamonn Keogh. "Parameter-Free Audio Motif Discovery in Large Data Archives". W 2013 IEEE International Conference on Data Mining (ICDM). IEEE, 2013. http://dx.doi.org/10.1109/icdm.2013.30.
Pełny tekst źródłaShen, Jiaxing, Oren Lederman, Jiannong Cao, Florian Berg, Shaojie Tang i Alex Pentland. "GINA: Group Gender Identification Using Privacy-Sensitive Audio Data". W 2018 IEEE International Conference on Data Mining (ICDM). IEEE, 2018. http://dx.doi.org/10.1109/icdm.2018.00061.
Pełny tekst źródłaS. N. Lagmiri i H. Bakhous. "AUDIO ENCRYPTION ALGORITHM USING HYPERCHAOTIC SYSTEMS OF DIFFERENT DIMENSIONS". W 3rd International Conference on Data Mining & Knowledge Management. AIRCC Publication Corporation, 2018. http://dx.doi.org/10.5121/csit.2018.81507.
Pełny tekst źródłaEbrahimi, Samaneh, Hossein Vahabi, Matthew Prockup i Oriol Nieto. "Predicting Audio Advertisement Quality". W WSDM 2018: The Eleventh ACM International Conference on Web Search and Data Mining. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3159652.3159701.
Pełny tekst źródłaYu, Lingyun, Jun Yu i Qiang Ling. "Mining Audio, Text and Visual Information for Talking Face Generation". W 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 2019. http://dx.doi.org/10.1109/icdm.2019.00089.
Pełny tekst źródłaSageder, Gerhard, Maia Zaharieva i Matthias Zeppelzauer. "Unsupervised Selection of Robust Audio Feature Subsets". W Proceedings of the 2014 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2014. http://dx.doi.org/10.1137/1.9781611973440.79.
Pełny tekst źródłaChu, Eric, i Deb Roy. "Audio-Visual Sentiment Analysis for Learning Emotional Arcs in Movies". W 2017 IEEE International Conference on Data Mining (ICDM). IEEE, 2017. http://dx.doi.org/10.1109/icdm.2017.100.
Pełny tekst źródłaRaporty organizacyjne na temat "Audio data mining"
Craven, J. A., G. McNeice, B. Powell, R. Koch, I R Annesley, G. Wood i J. Mwenifumbo. First look at data from a three-dimensional audio-magnetotelluric survey at the McArthur River mining camp, northern Saskatchewan. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2003. http://dx.doi.org/10.4095/214207.
Pełny tekst źródłaJajodia, Sushi. Integration of Audit Data Analysis and Mining Techniques into Aide. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2006. http://dx.doi.org/10.21236/ada456840.
Pełny tekst źródła