Artykuły w czasopismach na temat „Atomic force microscopy- Nanomaterials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Atomic force microscopy- Nanomaterials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Jahan, Nusrat, Hanwei Wang, Shensheng Zhao, Arkajit Dutta, Hsuan-Kai Huang, Yang Zhao i Yun-Sheng Chen. "Optical force microscopy: combining light with atomic force microscopy for nanomaterial identification". Nanophotonics 8, nr 10 (20.09.2019): 1659–71. http://dx.doi.org/10.1515/nanoph-2019-0181.
Pełny tekst źródłaYANG, X. H., Y. F. WANG, A. P. LIU, H. Z. XIN i J. C. LIU. "STUDIES ON MAGNETIC NANOMATERIALS BY ATOMIC FORCE MICROSCOPY WITH HIGH RESOLUTION". Modern Physics Letters B 19, nr 09n10 (30.04.2005): 469–72. http://dx.doi.org/10.1142/s0217984905008396.
Pełny tekst źródłaBozec, L., J. de Groot, M. Odlyha, B. Nicholls i M. A. Horton. "Mineralised tissues as nanomaterials: analysis by atomic force microscopy". IEE Proceedings - Nanobiotechnology 152, nr 5 (2005): 183. http://dx.doi.org/10.1049/ip-nbt:20050004.
Pełny tekst źródłaQu, Juntian, i Xinyu Liu. "Recent Advances on SEM-Based In Situ Multiphysical Characterization of Nanomaterials". Scanning 2021 (9.06.2021): 1–16. http://dx.doi.org/10.1155/2021/4426254.
Pełny tekst źródłaSaka, Masumi, Hironori Tohmyoh, M. Muraoka, Yang Ju i K. Sasagawa. "Formation of Metallic Micro/Nanomaterials by Utilizing Migration Phenomena and Techniques for their Applications". Materials Science Forum 614 (marzec 2009): 3–9. http://dx.doi.org/10.4028/www.scientific.net/msf.614.3.
Pełny tekst źródłaStylianou, Andreas. "Atomic Force Microscopy for Collagen-Based Nanobiomaterials". Journal of Nanomaterials 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/9234627.
Pełny tekst źródłaKim, Kwanlae. "Advances in Atomic Force Microscopy for the Electromechanical Characterization of Piezoelectric and Ferroelectric Nanomaterials". Korean Journal of Metals and Materials 60, nr 9 (5.09.2022): 629–43. http://dx.doi.org/10.3365/kjmm.2022.60.9.629.
Pełny tekst źródłaLi, Longhai, Xu Zhang, Hongfei Wang, Qian Lang, Haitao Chen i Lian Liu. "Measurement of Radial Elasticity and Original Height of DNA Duplex Using Tapping-Mode Atomic Force Microscopy". Nanomaterials 9, nr 4 (6.04.2019): 561. http://dx.doi.org/10.3390/nano9040561.
Pełny tekst źródłaFu, Wanyi, i Wen Zhang. "Measurement of the surface hydrophobicity of engineered nanoparticles using an atomic force microscope". Physical Chemistry Chemical Physics 20, nr 37 (2018): 24434–43. http://dx.doi.org/10.1039/c8cp04676j.
Pełny tekst źródłaHAN, XIAODONG, ZE ZHANG i ZHONG LIN WANG. "EXPERIMENTAL NANOMECHANICS OF ONE-DIMENSIONAL NANOMATERIALS BY IN SITU MICROSCOPY". Nano 02, nr 05 (październik 2007): 249–71. http://dx.doi.org/10.1142/s1793292007000623.
Pełny tekst źródłaWagner, Ryan, Robert J. Moon i Arvind Raman. "Mechanical properties of cellulose nanomaterials studied by contact resonance atomic force microscopy". Cellulose 23, nr 2 (13.02.2016): 1031–41. http://dx.doi.org/10.1007/s10570-016-0883-4.
Pełny tekst źródłaSosnov, E. A., i A. A. Malygin. "Features of sample preparation and atomic force microscopy study of dispersed nanomaterials". Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques 2, nr 5 (październik 2008): 699–704. http://dx.doi.org/10.1134/s1027451008050066.
Pełny tekst źródłaPérez-Piñeiro, Javier, Fernando Sánchez-Cea, Mariana P. Arce, Isabel Lado-Touriño, María Luisa Rojas-Cervantes, María Fuencisla Gilsanz, Darío Gallach-Pérez, Rodrigo Blasco, Niurka Barrios-Bermúdez i Arisbel Cerpa-Naranjo. "Stability Study of Graphene Oxide-Bovine Serum Albumin Dispersions". Journal of Xenobiotics 13, nr 1 (16.02.2023): 90–101. http://dx.doi.org/10.3390/jox13010008.
Pełny tekst źródłaCao, Yang, Wenwen Zhang, Pengfei Yang, Liping Zhang, Lili Li, Xin Zhao, Jinke Li, Xuezheng Ma, Ruijin Ping i Kongxin Hu. "Immunogold Nanoparticles Recognition imaging by Direct Atomic Force Microscopy". Journal of Applied Virology 6, nr 4 (25.02.2018): 55. http://dx.doi.org/10.21092/jav.v6i4.95.
Pełny tekst źródłaZeng, Guanghong, Kai Dirscherl i Jørgen Garnæs. "Toward Accurate Quantitative Elasticity Mapping of Rigid Nanomaterials by Atomic Force Microscopy: Effect of Acquisition Frequency, Loading Force, and Tip Geometry". Nanomaterials 8, nr 8 (14.08.2018): 616. http://dx.doi.org/10.3390/nano8080616.
Pełny tekst źródłaZhang, Wen, Joseph Hughes i Yongsheng Chen. "Impacts of Hematite Nanoparticle Exposure on Biomechanical, Adhesive, and Surface Electrical Properties of Escherichia coli Cells". Applied and Environmental Microbiology 78, nr 11 (30.03.2012): 3905–15. http://dx.doi.org/10.1128/aem.00193-12.
Pełny tekst źródłaZhao, Minji, Bo Tong, Yasuhiro Kimura, Yuhki Toku, Yasuyuki Morita i Yang Ju. "Quantitative evaluation of local permittivity of semiconductor nanomaterials using microwave atomic force microscopy". Applied Physics Letters 118, nr 19 (10.05.2021): 193103. http://dx.doi.org/10.1063/5.0049619.
Pełny tekst źródłaWinterauer, Dominik J., Daniel Funes-Hernando, Jean-Luc Duvail, Saïd Moussaoui, Tim Batten i Bernard Humbert. "Sub-Micron Spatial Resolution in Far-Field Raman Imaging Using Positivity-Constrained Super-Resolution". Applied Spectroscopy 73, nr 8 (27.03.2019): 902–9. http://dx.doi.org/10.1177/0003702819832355.
Pełny tekst źródłaTomić Luketić, Kristina, Juraj Hanžek, Catalina G. Mihalcea, Pavo Dubček, Andreja Gajović, Zdravko Siketić, Milko Jakšić, Corneliu Ghica i Marko Karlušić. "Charge State Effects in Swift-Heavy-Ion-Irradiated Nanomaterials". Crystals 12, nr 6 (19.06.2022): 865. http://dx.doi.org/10.3390/cryst12060865.
Pełny tekst źródłaBretšnajdrová, Edita, Ladislav Svoboda i Jiří Zelenka. "Determination of Particle Shape and Size Distribution of Model Types of Nanomaterials". Journal of Electrical Engineering 61, nr 5 (1.09.2010): 302–4. http://dx.doi.org/10.2478/v10187-011-0046-z.
Pełny tekst źródłaYang, Yijun, i Kwanlae Kim. "Dependency of Conductive Atomic Force Microscopy and Lateral Force Microscopy Signals on Scan Parameters for Zinc Oxide Nanorods". Korean Journal of Metals and Materials 60, nr 2 (5.02.2022): 149–59. http://dx.doi.org/10.3365/kjmm.2022.60.2.149.
Pełny tekst źródłaSepahvand, R., S. Alihosseini, M. Adeli i P. Sasanpour. "Fullerene-Gold Core-Shell Structures and Their Self-Assemblies". International Journal of Nanoscience 16, nr 02 (24.01.2017): 1650029. http://dx.doi.org/10.1142/s0219581x16500290.
Pełny tekst źródłaPathan, Abrarkhan M., Dhawal H. Agrawal, Pina M. Bhatt, Hitarthi H. Patel i U. S. Joshi. "Design and Construction of Low Temperature Attachment for Commercial AFM". Solid State Phenomena 209 (listopad 2013): 137–42. http://dx.doi.org/10.4028/www.scientific.net/ssp.209.137.
Pełny tekst źródłaZhong, Jian, i Juan Yan. "Seeing is believing: atomic force microscopy imaging for nanomaterial research". RSC Advances 6, nr 2 (2016): 1103–21. http://dx.doi.org/10.1039/c5ra22186b.
Pełny tekst źródłaCerpa-Naranjo, Arisbel, Javier Pérez-Piñeiro, Pablo Navajas-Chocarro, Mariana P. Arce, Isabel Lado-Touriño, Niurka Barrios-Bermúdez, Rodrigo Moreno i María Luisa Rojas-Cervantes. "Rheological Properties of Different Graphene Nanomaterials in Biological Media". Materials 15, nr 10 (18.05.2022): 3593. http://dx.doi.org/10.3390/ma15103593.
Pełny tekst źródłaLiu, Mei, Weilin Su, Xiangzheng Qin, Kai Cheng, Wei Ding, Li Ma, Ze Cui i in. "Mechanical/Electrical Characterization of ZnO Nanomaterial Based on AFM/Nanomanipulator Embedded in SEM". Micromachines 12, nr 3 (28.02.2021): 248. http://dx.doi.org/10.3390/mi12030248.
Pełny tekst źródłaPARK, Ji-Yong. "An Investigation of the Electrical Characteristics of Nanomaterials and Nanodevices by Using Atomic Force Microscopy". Physics and High Technology 28, nr 4 (30.04.2019): 22–25. http://dx.doi.org/10.3938/phit.28.015.
Pełny tekst źródłaWang, Yan Qing, Ling Sun i Bunshi Fugetsu. "Polyelectrolyte-Induced Dispersion of Graphene Sheets in the Hybrid AgCl/PDDA/Graphene Nanocomposites". Advanced Materials Research 663 (luty 2013): 357–60. http://dx.doi.org/10.4028/www.scientific.net/amr.663.357.
Pełny tekst źródłaRen, Zhe, Francesca Mastropietro, Anton Davydok, Simon Langlais, Marie-Ingrid Richard, Jean-Jacques Furter, Olivier Thomas i in. "Scanning force microscope forin situnanofocused X-ray diffraction studies". Journal of Synchrotron Radiation 21, nr 5 (6.08.2014): 1128–33. http://dx.doi.org/10.1107/s1600577514014532.
Pełny tekst źródłaSon, Jiyoung, Edgar C. Buck, Shawn L. Riechers i Xiao-Ying Yu. "Stamping Nanoparticles onto the Electrode for Rapid Electrochemical Analysis in Microfluidics". Micromachines 12, nr 1 (6.01.2021): 60. http://dx.doi.org/10.3390/mi12010060.
Pełny tekst źródłaChuang, Ming-Kai, Fang-Chung Chen i Chain-Shu Hsu. "Gold Nanoparticle-Graphene Oxide Nanocomposites That Enhance the Device Performance of Polymer Solar Cells". Journal of Nanomaterials 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/736879.
Pełny tekst źródłaBirdeanu, Mihaela, Mirela Vaida i Eugenia Fagadar-Cosma. "Hydrothermal synthesis of ZnTa2O6, ZnNb2O6, MgTa2O6 and MgNb2O6 pseudo-binary oxide nanomaterials with anticorrosive properties". Manufacturing Review 7 (2020): 39. http://dx.doi.org/10.1051/mfreview/2020037.
Pełny tekst źródłaNesheva, D., A. Petrova, S. Stavrev, Z. Levi i Z. Aneva. "Thin film semiconductor nanomaterials and nanostructures prepared by physical vapour deposition: An atomic force microscopy study". Journal of Physics and Chemistry of Solids 68, nr 5-6 (maj 2007): 675–80. http://dx.doi.org/10.1016/j.jpcs.2007.02.025.
Pełny tekst źródłaPlatnich, Casey M., Abhinandan Banerjee, Vinayaraj Ozhukil Kollath, Kunal Karan i Simon Trudel. "Thiol-ene click microcontact printing of gold nanoparticles onto silicon surfaces". Canadian Journal of Chemistry 96, nr 2 (luty 2018): 190–95. http://dx.doi.org/10.1139/cjc-2017-0321.
Pełny tekst źródłaJu, Dianming, Ying Zhang, Rui Li, Shuang Liu, Longhai Li i Haitao Chen. "Mechanism-Independent Manipulation of Single-Wall Carbon Nanotubes with Atomic Force Microscopy Tip". Nanomaterials 10, nr 8 (30.07.2020): 1494. http://dx.doi.org/10.3390/nano10081494.
Pełny tekst źródłaMuflikhun, Muhammad Akhsin, Alvin Y. Chua i Gil N. C. Santos. "Structures, Morphological Control, and Antibacterial Performance of Ag/TiO2 Micro-Nanocomposite Materials". Advances in Materials Science and Engineering 2019 (7.05.2019): 1–12. http://dx.doi.org/10.1155/2019/9821535.
Pełny tekst źródłaSchaefer, Jens, Christine Schulze, Elena Eva Julianne Marxer, Ulrich Friedrich Schaefer, Wendel Wohlleben, Udo Bakowsky i Claus-Michael Lehr. "Atomic Force Microscopy and Analytical Ultracentrifugation for Probing Nanomaterial Protein Interactions". ACS Nano 6, nr 6 (25.05.2012): 4603–14. http://dx.doi.org/10.1021/nn202657q.
Pełny tekst źródłaOke, Isdin. "Nanoscience in nature: cellulose nanocrystals". SURG Journal 3, nr 2 (6.02.2010): 77–80. http://dx.doi.org/10.21083/surg.v3i2.1132.
Pełny tekst źródłaTepale, Nancy, Víctor V. A. Fernández-Escamilla, Clara Carreon-Alvarez, Valeria J. González-Coronel, Adan Luna-Flores, Alejandra Carreon-Alvarez i Jacobo Aguilar. "Nanoengineering of Gold Nanoparticles: Green Synthesis, Characterization, and Applications". Crystals 9, nr 12 (22.11.2019): 612. http://dx.doi.org/10.3390/cryst9120612.
Pełny tekst źródłaJha, Pankaj Kumar, Watsa Khongnakorn, Chamorn Chawenjkigwanich, Md Shahariar Chowdhury i Kuaanan Techato. "Eco-Friendly Reduced Graphene Oxide Nanofilter Preparation and Application for Iron Removal". Separations 8, nr 5 (19.05.2021): 68. http://dx.doi.org/10.3390/separations8050068.
Pełny tekst źródłaLi, Jinghao, Qiangu Yan, Xuefeng Zhang, Jilei Zhang i Zhiyong Cai. "Efficient Conversion of Lignin Waste to High Value Bio-Graphene Oxide Nanomaterials". Polymers 11, nr 4 (4.04.2019): 623. http://dx.doi.org/10.3390/polym11040623.
Pełny tekst źródłaDeryabin, D. G., A. S. Vasilchenko, E. S. Aleshina, A. S. Tlyagulova i H. N. Nikiyan. "An investigation into the interaction between carbon-based nanomaterials and Escherichia coli cells using atomic force microscopy". Nanotechnologies in Russia 5, nr 11-12 (grudzień 2010): 857–63. http://dx.doi.org/10.1134/s1995078010110169.
Pełny tekst źródłaKotsilkov, Stanislav, Evgeni Ivanov i Nikolay Vitanov. "Release of Graphene and Carbon Nanotubes from Biodegradable Poly(Lactic Acid) Films during Degradation and Combustion: Risk Associated with the End-of-Life of Nanocomposite Food Packaging Materials". Materials 11, nr 12 (22.11.2018): 2346. http://dx.doi.org/10.3390/ma11122346.
Pełny tekst źródłaParkin, John D., i Georg Hähner. "Contact-free experimental determination of the static flexural spring constant of cantilever sensors using a microfluidic force tool". Beilstein Journal of Nanotechnology 7 (30.03.2016): 492–500. http://dx.doi.org/10.3762/bjnano.7.43.
Pełny tekst źródłaYoosaf, K., Abdelhalim Belbakra, Anna Llanes-Pallas, Davide Bonifazi i Nicola Armaroli. "Engineering supramolecular photoactive nanomaterials by hydrogen-bonding interactions". Pure and Applied Chemistry 83, nr 4 (14.03.2011): 899–912. http://dx.doi.org/10.1351/pac-con-10-10-22.
Pełny tekst źródłaKhdr, Noor Fakher, Baida M. Ahmed i Bassam G. Rasheed. "Optical and Morphological Properties of Silver Nanoparticles Synthesis by Laser Induced Forward Transfer Technique". Al-Mustansiriyah Journal of Science 32, nr 3 (24.06.2021): 67. http://dx.doi.org/10.23851/mjs.v32i3.995.
Pełny tekst źródłaPovilonienė, Simona, Vida Časaitė, Virginijus Bukauskas, Arūnas Šetkus, Juozas Staniulis i Rolandas Meškys. "Functionalization of α-synuclein fibrils". Beilstein Journal of Nanotechnology 6 (12.01.2015): 124–33. http://dx.doi.org/10.3762/bjnano.6.12.
Pełny tekst źródłaWang, Baomin, Shuang Deng i Lu Zhao. "Modification of Ultraviolet Spectrophotometry Representational Method in Graphene Nanoplates Dispersion". Journal of Nanoscience and Nanotechnology 20, nr 7 (1.07.2020): 4015–22. http://dx.doi.org/10.1166/jnn.2020.17538.
Pełny tekst źródłaBhushan, Bharat. "Nanotribology, nanomechanics and nanomaterials characterization". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, nr 1869 (20.12.2007): 1351–81. http://dx.doi.org/10.1098/rsta.2007.2163.
Pełny tekst źródłaPeskersoy, Cem, i Osman Culha. "Comparative Evaluation of Mechanical Properties of Dental Nanomaterials". Journal of Nanomaterials 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/6171578.
Pełny tekst źródła