Gotowa bibliografia na temat „Atomic force microscopy- Nanomaterials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Atomic force microscopy- Nanomaterials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Atomic force microscopy- Nanomaterials"
Jahan, Nusrat, Hanwei Wang, Shensheng Zhao, Arkajit Dutta, Hsuan-Kai Huang, Yang Zhao i Yun-Sheng Chen. "Optical force microscopy: combining light with atomic force microscopy for nanomaterial identification". Nanophotonics 8, nr 10 (20.09.2019): 1659–71. http://dx.doi.org/10.1515/nanoph-2019-0181.
Pełny tekst źródłaYANG, X. H., Y. F. WANG, A. P. LIU, H. Z. XIN i J. C. LIU. "STUDIES ON MAGNETIC NANOMATERIALS BY ATOMIC FORCE MICROSCOPY WITH HIGH RESOLUTION". Modern Physics Letters B 19, nr 09n10 (30.04.2005): 469–72. http://dx.doi.org/10.1142/s0217984905008396.
Pełny tekst źródłaBozec, L., J. de Groot, M. Odlyha, B. Nicholls i M. A. Horton. "Mineralised tissues as nanomaterials: analysis by atomic force microscopy". IEE Proceedings - Nanobiotechnology 152, nr 5 (2005): 183. http://dx.doi.org/10.1049/ip-nbt:20050004.
Pełny tekst źródłaQu, Juntian, i Xinyu Liu. "Recent Advances on SEM-Based In Situ Multiphysical Characterization of Nanomaterials". Scanning 2021 (9.06.2021): 1–16. http://dx.doi.org/10.1155/2021/4426254.
Pełny tekst źródłaSaka, Masumi, Hironori Tohmyoh, M. Muraoka, Yang Ju i K. Sasagawa. "Formation of Metallic Micro/Nanomaterials by Utilizing Migration Phenomena and Techniques for their Applications". Materials Science Forum 614 (marzec 2009): 3–9. http://dx.doi.org/10.4028/www.scientific.net/msf.614.3.
Pełny tekst źródłaStylianou, Andreas. "Atomic Force Microscopy for Collagen-Based Nanobiomaterials". Journal of Nanomaterials 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/9234627.
Pełny tekst źródłaKim, Kwanlae. "Advances in Atomic Force Microscopy for the Electromechanical Characterization of Piezoelectric and Ferroelectric Nanomaterials". Korean Journal of Metals and Materials 60, nr 9 (5.09.2022): 629–43. http://dx.doi.org/10.3365/kjmm.2022.60.9.629.
Pełny tekst źródłaLi, Longhai, Xu Zhang, Hongfei Wang, Qian Lang, Haitao Chen i Lian Liu. "Measurement of Radial Elasticity and Original Height of DNA Duplex Using Tapping-Mode Atomic Force Microscopy". Nanomaterials 9, nr 4 (6.04.2019): 561. http://dx.doi.org/10.3390/nano9040561.
Pełny tekst źródłaFu, Wanyi, i Wen Zhang. "Measurement of the surface hydrophobicity of engineered nanoparticles using an atomic force microscope". Physical Chemistry Chemical Physics 20, nr 37 (2018): 24434–43. http://dx.doi.org/10.1039/c8cp04676j.
Pełny tekst źródłaHAN, XIAODONG, ZE ZHANG i ZHONG LIN WANG. "EXPERIMENTAL NANOMECHANICS OF ONE-DIMENSIONAL NANOMATERIALS BY IN SITU MICROSCOPY". Nano 02, nr 05 (październik 2007): 249–71. http://dx.doi.org/10.1142/s1793292007000623.
Pełny tekst źródłaRozprawy doktorskie na temat "Atomic force microscopy- Nanomaterials"
Kent, Ronald Douglas. "Controlled Evaluation of Silver Nanoparticle Dissolution Using Atomic Force Microscopy". Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/35632.
Pełny tekst źródłaMaster of Science
Rupasinghe, R.-A. Thilini Perera. "Probing electrical and mechanical properties of nanoscale materials using atomic force microscopy". Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/2268.
Pełny tekst źródłaWood, Erin Leigh. "An Atomic Force Microscopy Nanoindentation Study of Size Effects in Face-Centered Cubic Metal and Bimetallic Nanowires". ScholarWorks @ UVM, 2014. http://scholarworks.uvm.edu/graddis/260.
Pełny tekst źródłaBecerril-Garcia, Hector Alejandro. "DNA-Templated Nanomaterials". Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1823.pdf.
Pełny tekst źródłaMartinez-Morales, Alfredo Adolfo. "Synthesis, characterization and applications of novel nanomaterial systems and semiconducting nanowires". Diss., [Riverside, Calif.] : University of California, Riverside, 2010. http://proquest.umi.com/pqdweb?index=0&did=2019838541&SrchMode=2&sid=2&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1273864032&clientId=48051.
Pełny tekst źródłaIncludes abstract. Available via ProQuest Digital Dissertations. Title from first page of PDF file (viewed May 14, 2010). Includes bibliographical references. Also issued in print.
Kent, Ronald Douglas. "Controlled Evaluation of Metal-Based Nanomaterial Transformations". Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/74998.
Pełny tekst źródłaPh. D.
Colaço, Élodie. "Design and characterization of biomimetic biomineralized nanomaterials". Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2529.
Pełny tekst źródłaThe design of a composite based on collagen and hydroxyapatite crystals attractes a great interest in materials science and biomedical research particularly for bone tissue applications. The objective is to synthesize, at the nanoscale, a biomaterial from these two components in a controlled conditions in order to modulate its physicochemical, structural and mechanical properties. This thesis project highlights the role of collagen in the mineralization mechanism with the aim of developing a biomimetic biomineralized nanomaterial. To this end, several strategies have been suggested: (i) assembly of collagen with preformed hydroxyapatite crystals, (ii) mineralization of hydroxyapatite by enzymatic catalysis (iii) elaboration of mineralized enzyme-based multilayers by the "layer-by-layer" strategy to form a nanofilm or nanotube in the presence of collagen or not. The characterization of the various mineralized nanostructured materials obtained is performed by several physicochemical techniques including transmission electron microscopy (TEM) and scanning electron microscopy (SEM), atomic force microscopy (AFM), vibrational spectroscopy (IR and Raman), turbiscan, quartz crystal microbalance (QCM-D) and light scattering measurement (DLS)
Iwasiewicz-Wabnig, Agnieszka. "Studies of carbon nanomaterials based on fullerenes and carbon nanotubes". Doctoral thesis, Umeå : Department of Physics, Umeå University, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1312.
Pełny tekst źródłaYu-Su, Sherryl Yao Sheiko Sergei. "Molecular visualization of polymer thin films by atomic force microscopy towards patterning and replication of soft nanostructures for nanomaterial design and construction /". Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2009. http://dc.lib.unc.edu/u?/etd,2277.
Pełny tekst źródłaTitle from electronic title page (viewed Jun. 26, 2009). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Curriculum of Applied Sciences and Engineering." Discipline: Applied and Materials Sciences; Department/School: Applied and Materials Sciences.
Rasel, Md Alim Iftekhar. "Experimental exploration of boron nitride nanoparticle interaction with living cells". Thesis, Queensland University of Technology, 2017. https://eprints.qut.edu.au/118067/1/Alim_Rasel_Thesis.pdf.
Pełny tekst źródłaKsiążki na temat "Atomic force microscopy- Nanomaterials"
Braga, Pier Carlo, i Davide Ricci. Atomic Force Microscopy. New Jersey: Humana Press, 2003. http://dx.doi.org/10.1385/1592596479.
Pełny tekst źródłaAhmed, Touhami. Atomic Force Microscopy. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-02385-9.
Pełny tekst źródłaSantos, Nuno C., i Filomena A. Carvalho, red. Atomic Force Microscopy. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-8894-5.
Pełny tekst źródłaHaugstad, Greg. Atomic Force Microscopy. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118360668.
Pełny tekst źródłaVoigtländer, Bert. Atomic Force Microscopy. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13654-3.
Pełny tekst źródłaPaul, West, red. Atomic force microscopy. Oxford: Oxford University Press, 2010.
Znajdź pełny tekst źródłaLanza, Mario, red. Conductive Atomic Force Microscopy. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527699773.
Pełny tekst źródłaMorita, S., R. Wiesendanger i E. Meyer, red. Noncontact Atomic Force Microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56019-4.
Pełny tekst źródłaMorita, Seizo, Franz J. Giessibl, Ernst Meyer i Roland Wiesendanger, red. Noncontact Atomic Force Microscopy. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15588-3.
Pełny tekst źródłaMorita, Seizo, Franz J. Giessibl i Roland Wiesendanger, red. Noncontact Atomic Force Microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01495-6.
Pełny tekst źródłaCzęści książek na temat "Atomic force microscopy- Nanomaterials"
Baykara, Mehmet Z. "Noncontact Atomic Force Microscopy for Atomic-Scale Characterization of Material Surfaces". W Surface Science Tools for Nanomaterials Characterization, 273–316. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44551-8_8.
Pełny tekst źródłaMaharaj, Dave, i Bharat Bhushan. "Nanomanipulation and Nanotribology of Nanoparticles and Nanotubes Using Atomic Force Microscopy". W Handbook of Nanomaterials Properties, 299–315. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-31107-9_18.
Pełny tekst źródłaTorres-Ventura, H. H., J. J. Chanona-Pérez, L. Dorantes-Álvarez, J. V. Méndez-Méndez, B. Arredondo-Tamayo, P. I. Cauich-Sánchez i Ana Elena Jiménez-Carmona. "Atomic Force Microscopy Principles and Recent Studies of Imaging and Nanomechanical Properties in Bacteria". W Biogenic Nanomaterials, 49–82. Boca Raton: Apple Academic Press, 2022. http://dx.doi.org/10.1201/9781003277149-4.
Pełny tekst źródłaArnold, W. "Investigation of Ceramics and Ferroelectric Materials by Atomic Force Acoustic Microscopy". W Ceramic Nanomaterials and Nanotechnologies IV, 239–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118408049.ch24.
Pełny tekst źródłaEdwards-Gayle, Charlotte J. C., i Jacek K. Wychowaniec. "Characterization of Peptide-Based Nanomaterials". W Peptide Bionanomaterials, 255–308. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29360-3_8.
Pełny tekst źródłaBandyopadhyay, S., S. K. Samudrala, A. K. Bhowmick i S. K. Gupta. "Applications of Atomic Force Microscope (AFM) in the Field of Nanomaterials and Nanocomposites". W Functional Nanostructures, 504–68. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-48805-9_9.
Pełny tekst źródłaBykov, Victor A., Arseny Kalinin, Vyatcheslav Polyakov i Artem Shelaev. "Modern Aspects of Technologies of Atomic Force Microscopy and Scanning Spectroscopy for Nanomaterials and Nanostructures Investigations and Characterizations". W Nanoscience and Nanoengineering, 217–24. Description : Toronto; New Jersey : Apple Academic Press, 2019.: Apple Academic Press, 2018. http://dx.doi.org/10.1201/9781351138789-16.
Pełny tekst źródłaMarinello, Francesco. "Atomic Force Microscopy". W CIRP Encyclopedia of Production Engineering, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-35950-7_6577-3.
Pełny tekst źródłaMarinello, Francesco. "Atomic Force Microscopy". W CIRP Encyclopedia of Production Engineering, 93–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-53120-4_6577.
Pełny tekst źródłaSugawara, Yasuhiro. "Atomic Force Microscopy". W Roadmap of Scanning Probe Microscopy, 15–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-34315-8_3.
Pełny tekst źródłaStreszczenia konferencji na temat "Atomic force microscopy- Nanomaterials"
Lawn, Malcolm. "Traceable dimensional measurement of nanomaterials with Atomic Force Microscopy". W European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.691.
Pełny tekst źródłaBdikin, Igor. "MODELING THE PIEZOELECTRIC PROPERTIES OF NANOMATERIALS IN ATOMIC FORCE MICROSCOPY". W Mathematical modeling in materials science of electronic component. LCC MAKS Press, 2021. http://dx.doi.org/10.29003/m2485.mmmsec-2021/107-108.
Pełny tekst źródłaKamal, Ahmed, Hassan Abu Bakr, Ziyang Wang, H. El Samman, Paolo Fiorini i Sherif Sedky. "Characterization of (Bi0.25Sb0.75)2Te3 Deposited by Pulsed Laser Deposition". W ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/mn2008-47020.
Pełny tekst źródłaKatakura, Kenta, Kenta Nakazawa i Futoshi Iwata. "Manipulation of one-dimensional nanomaterials using a high-speed atomic force microscope in tapping mode". W 2019 International Symposium on Micro-NanoMechatronics and Human Science (MHS). IEEE, 2019. http://dx.doi.org/10.1109/mhs48134.2019.9249318.
Pełny tekst źródłaKarsliog˘lu, Ramazan, Hatem Akbulut i Ahmet Alp. "CVD Nano-Crystalline Tin Oxide Coatings on Glass Substrate: The Effect of Substrate Temperature". W ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/mn2008-47075.
Pełny tekst źródłaZembrzycki, Krzysztof, Tomasz Aleksander Kowalewski, Sylwia Pawlowska, Justyna Chrzanowska-Gizynska, Marcin Nowak, Mateusz Walczak i Filippo Pierini. "Atomic force microscopy combined with optical tweezers (AFM/OT): characterization of micro and nanomaterial interactions". W Optical Trapping and Optical Micromanipulation XV, redaktorzy Kishan Dholakia i Gabriel C. Spalding. SPIE, 2018. http://dx.doi.org/10.1117/12.2319732.
Pełny tekst źródłaYehia, Ahmed, Ayman A. El-Midani, Suzan S. Ibrahim i Jan D. Miller. "Nano-Interfacial Chemistry of Waste Paper Deinking Processes Using Fatty Ethoxylates". W ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/mn2008-47005.
Pełny tekst źródłaGuler, Mehmet Oguz, Mirac Alaf, Deniz Gultekin, Hatem Akbulut i Ahmet Alp. "The Effect of Pressure on the Microstructural Behavior on SnO2 Thin Films Deposited by RF Sputtering". W ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/mn2008-47071.
Pełny tekst źródłaLombardo, Jeffrey J., Andrew C. Lysaght, Daniel G. Goberman i Wilson K. S. Chiu. "Growth and Characterization of Iron Nanoparticle Catalysts for Nanomaterial Synthesis". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68449.
Pełny tekst źródłaDongdong Zhang i Xiaoping Qian. "Scanning in atomic force microscopy". W 2009 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2009. http://dx.doi.org/10.1109/robot.2009.5152555.
Pełny tekst źródłaRaporty organizacyjne na temat "Atomic force microscopy- Nanomaterials"
Burgens, LaTashia. The Atomic Force Microscopic (AFM) Characterization of Nanomaterials. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2009. http://dx.doi.org/10.21236/ada550815.
Pełny tekst źródłaTurner, Joseph A. Materials Characterization by Atomic Force Microscopy. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2003. http://dx.doi.org/10.21236/ada414116.
Pełny tekst źródłaSnyder, Shelly R., i Henry S. White. Scanning Tunneling Microscopy, Atomic Force Microscopy, and Related Techniques. Fort Belvoir, VA: Defense Technical Information Center, luty 1992. http://dx.doi.org/10.21236/ada246852.
Pełny tekst źródłaHouston, J. E., i J. G. Fleming. Non-contact atomic-level interfacial force microscopy. Office of Scientific and Technical Information (OSTI), luty 1997. http://dx.doi.org/10.2172/453500.
Pełny tekst źródłaCrone, Joshua C., Santiago Solares i Peter W. Chung. Simulated Frequency and Force Modulation Atomic Force Microscopy on Soft Samples. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2007. http://dx.doi.org/10.21236/ada469876.
Pełny tekst źródłaSalapaka, Srinivasa M., i Petros G. Voulgaris. Fast Scanning and Fast Image Reconstruction in Atomic Force Microscopy. Fort Belvoir, VA: Defense Technical Information Center, marzec 2009. http://dx.doi.org/10.21236/ada495364.
Pełny tekst źródłaNoy, A., J. J. De Yoreo i A. J. Malkin. Carbon Nanotube Atomic Force Microscopy for Proteomics and Biological Forensics. Office of Scientific and Technical Information (OSTI), styczeń 2002. http://dx.doi.org/10.2172/15004647.
Pełny tekst źródłaHaydell, Jr, i Michael W. Direct Writing of Graphene-based Nanoelectronics via Atomic Force Microscopy. Fort Belvoir, VA: Defense Technical Information Center, maj 2012. http://dx.doi.org/10.21236/ada571834.
Pełny tekst źródłaHough, P., i V. Elings. Methods for Study of Biological Structure by Atomic Force Microscopy. Office of Scientific and Technical Information (OSTI), maj 1998. http://dx.doi.org/10.2172/770449.
Pełny tekst źródłaKlabunde, Kenneth J., i Dong Park. Scanning Tunneling Microscopy/Atomic Force Microscopy for Study of Nanoscale Metal Oxide Particles (Destructive Adsorbents). Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1994. http://dx.doi.org/10.21236/ada281417.
Pełny tekst źródła