Gotowa bibliografia na temat „ASYMMETRICAL FUZZY LOGIC CONTROL (AFLC)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „ASYMMETRICAL FUZZY LOGIC CONTROL (AFLC)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "ASYMMETRICAL FUZZY LOGIC CONTROL (AFLC)"
Abusorrah, Abdullah M. "Optimal Power Flow Using Adaptive Fuzzy Logic Controllers". Mathematical Problems in Engineering 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/975170.
Pełny tekst źródłaSadeghi, Maryam, i Majid Gholami. "Robust Adaptive Fuzzy Logic Controllers for Intelligent Universal Transformers in ADA". Advanced Materials Research 403-408 (listopad 2011): 5038–44. http://dx.doi.org/10.4028/www.scientific.net/amr.403-408.5038.
Pełny tekst źródłaYordanova, Snejana, i Milen Slavov. "Stability Analysis of Model-Free Adaptive Fuzzy Logic Control System Applied for Liquid Level Control in Soda Production." Jordan Journal of Electrical Engineering 9, nr 1 (2023): 14. http://dx.doi.org/10.5455/jjee.204-1667497864.
Pełny tekst źródłaPriyadarshi, Neeraj, Amarjeet Kr. Sharma, Akash Kumar Bhoi, S. N. Ahmad, Farooque Azam i S. Priyam. "A Practical performance verification of AFLC based MPPT for standalone PV power system under varying weather condi-tion". International Journal of Engineering & Technology 7, nr 2.12 (3.04.2018): 338. http://dx.doi.org/10.14419/ijet.v7i2.12.11319.
Pełny tekst źródłaRathaiah, M., P. Ram Kishore Kumar Reddy i P. Sujatha. "Adaptive Fuzzy Controller Design for Solar And Wind Based Hybrid System". International Journal of Engineering & Technology 7, nr 2.24 (25.04.2018): 283. http://dx.doi.org/10.14419/ijet.v7i2.24.12065.
Pełny tekst źródłaHieu, Le Dinh, i Temkin Igor Olegovich. "Application of Adaptive PSO and Adaptive Fuzzy Logic Controllers to Speed Control PMSM Motor Servo Systems". MATEC Web of Conferences 220 (2018): 08003. http://dx.doi.org/10.1051/matecconf/201822008003.
Pełny tekst źródłaLiu, Chun-Liang, Jing-Hsiao Chen, Yi-Hua Liu i Zong-Zhen Yang. "An Asymmetrical Fuzzy-Logic-Control-Based MPPT Algorithm for Photovoltaic Systems". Energies 7, nr 4 (1.04.2014): 2177–93. http://dx.doi.org/10.3390/en7042177.
Pełny tekst źródłaGupta, Nikita, i Rachana Garg. "Tuning of asymmetrical fuzzy logic control algorithm for SPV system connected to grid". International Journal of Hydrogen Energy 42, nr 26 (czerwiec 2017): 16375–85. http://dx.doi.org/10.1016/j.ijhydene.2017.05.103.
Pełny tekst źródłaGuliyev, H. B., N. V. Tomin i F. Sh Ibrahimov. "Methods of intelligent protection from asymmetrical conditions in electric networks". E3S Web of Conferences 209 (2020): 07004. http://dx.doi.org/10.1051/e3sconf/202020907004.
Pełny tekst źródłaBie, Hongling, Pengyu Li, Fenghua Chen i Ebrahim Ghaderpour. "An Observer-Based Type-3 Fuzzy Control for Non-Holonomic Wheeled Robots". Symmetry 15, nr 7 (3.07.2023): 1354. http://dx.doi.org/10.3390/sym15071354.
Pełny tekst źródłaRozprawy doktorskie na temat "ASYMMETRICAL FUZZY LOGIC CONTROL (AFLC)"
VERMA, PALLAVI. "CONTROL OF SOLAR PV SYSTEM BASED MICROGRID FOR ENHANCED PERFORMANCE". Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18879.
Pełny tekst źródłaChen, Po-Cheng, i 陳柏成. "Asymmetrical Fuzzy Logic Control for Photovoltaic Maximum Power Point Tracking". Thesis, 2015. http://ndltd.ncl.edu.tw/handle/52560778913659807256.
Pełny tekst źródła國立臺灣科技大學
電機工程系
103
In this dissertation, an asymmetrical fuzzy-logic-control (FLC) based maximum power point tracking (MPPT) algorithm for photovoltaic (PV) systems is presented. Two membership function (MF) design methodologies that can improve the effectiveness of the proposed asymmetrical FLC-based MPPT methods are then proposed. The first method can quickly determine the input MF setting values via the power–voltage (P–V) curve of solar cells under standard test conditions (STC). The second method uses the particle swarm optimization (PSO) technique to optimize the input MF setting values. Because the PSO approach must target a cost function and optimization, a cost function design methodology that meets the performance requirements of practical photovoltaic generation systems (PGSs) is also proposed. The proposed asymmetrical FLC-based MPPT algorithm is implemented using a low cost digital signal controller dsPIC33FJ16GS502. To validate the correctness and the effectiveness of the proposed method, a 300 W prototyping circuit is built and simulations as well as experiments are carried out accordingly. Compared with the symmetrical FLC-based MPPT method, the transient time and the MPPT tracking accuracy are improved by 25.8% and 0.93% under STC, respectively. Moreover, since the symmetrical FLC-based MPPT method fails to track the real MPP when irradiance level is low, the proposed asymmetrical FLC-based MPPT method can successfully deal with this problem. The advantages of the first MF design method are that it is simple and easy to adopt. The second MF design method applies the PSO technique to obtain the optimized input MF setting values. Compared with the first design method, the transient time and the MPP tracking accuracy can further be improved by 0.88% and 0.98%, respectively. This proves that PSO can be successfully applied to obtain the optimized MF setting values. In addition, the PSO optimized asymmetrical FLC-based MPPT method has the highest fitness value compared with other implemented methods.
Streszczenia konferencji na temat "ASYMMETRICAL FUZZY LOGIC CONTROL (AFLC)"
Gupta, Nikita, Rachana Garg i Parmod Kumar. "Asymmetrical fuzzy logic control to PV module connected micro-grid". W 2015 Annual IEEE India Conference (INDICON). IEEE, 2015. http://dx.doi.org/10.1109/indicon.2015.7443356.
Pełny tekst źródłaZhu Lei, Wen Xuhui i Xue Shan. "Enhanced field-weakening strategy with an asymmetrical fuzzy logic voltage regulator". W 2009 IEEE 6th International Power Electronics and Motion Control Conference. IEEE, 2009. http://dx.doi.org/10.1109/ipemc.2009.5157743.
Pełny tekst źródłaKuang, Zhi, Bochao Du, Shouliang Han, Kaibo Li i Shumei Cui. "Optimal Efficiency Control of Asymmetrical Fifteen Phase PMSM Based on Fuzzy Logic Control Theory". W 2018 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2018. http://dx.doi.org/10.1109/vppc.2018.8604974.
Pełny tekst źródłaZigirkas, Gregory, i John Kalomiros. "Voltage control of single-phase induction motors using asymmetrical PWM and fuzzy logic". W 2016 5th International Conference on Modern Circuits and Systems Technologies (MOCAST). IEEE, 2016. http://dx.doi.org/10.1109/mocast.2016.7495119.
Pełny tekst źródłaFapi, Claude Bertin Nzoundja, Patrice Wira, Martin Kamta i Bruno Colicchio. "Design and Hardware Realization of an Asymmetrical Fuzzy Logic-based MPPT Control for Photovoltaic Applications". W IECON 2021 - 47th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2021. http://dx.doi.org/10.1109/iecon48115.2021.9589287.
Pełny tekst źródłaLee, Hyeongcheol, i Masayoshi Tomizuka. "Adaptive Vehicle Traction Force Control for Intelligent Vehicle Highway Systems (IVHS)". W ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-0315.
Pełny tekst źródłaLee, Sang Yeal, Young Jun Park i Hyung Suck Cho. "A Neuro-Fuzzy Control of an Electro-Hydraulic Fin Position Servo System". W ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-0549.
Pełny tekst źródła