Gotowa bibliografia na temat „Astrophysical ices”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Astrophysical ices”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Astrophysical ices"
Palumbo, M. E., G. A. Baratta, D. Fulvio, M. Garozzo, O. Gomis, G. Leto, F. Spinella i G. Strazzulla. "Ion irradiation of astrophysical ices". Journal of Physics: Conference Series 101 (1.02.2008): 012002. http://dx.doi.org/10.1088/1742-6596/101/1/012002.
Pełny tekst źródłaPalumbo, M. E., G. A. Baratta, G. Leto i G. Strazzulla. "H bonds in astrophysical ices". Journal of Molecular Structure 972, nr 1-3 (maj 2010): 64–67. http://dx.doi.org/10.1016/j.molstruc.2009.12.017.
Pełny tekst źródłaBoduch, Philippe, Emmanuel Dartois, Ana L. F. de Barros, Enio F. da Silveira, Alicja Domaracka, Xue-Yang Lv, Maria Elisabetta Palumbo i in. "Radiation effects in astrophysical ices". Journal of Physics: Conference Series 629 (13.07.2015): 012008. http://dx.doi.org/10.1088/1742-6596/629/1/012008.
Pełny tekst źródłaStrazzulla, G., A. C. Castorina i M. E. Palumbo. "Ion irradiation of astrophysical ices". Planetary and Space Science 43, nr 10-11 (październik 1995): 1247–51. http://dx.doi.org/10.1016/0032-0633(95)00040-c.
Pełny tekst źródłaFarenzena, L. S., P. Iza, R. Martinez, F. A. Fernandez-Lima, E. Seperuelo Duarte, G. S. Faraudo, C. R. Ponciano i in. "Electronic Sputtering Analysis of Astrophysical Ices". Earth, Moon, and Planets 97, nr 3-4 (grudzień 2005): 311–29. http://dx.doi.org/10.1007/s11038-006-9081-y.
Pełny tekst źródłaGolikov, O., D. Yerezhep, A. Akylbayeva, D. Sokolov, E. Korshikov i A. Aldiyarov. "Cryovacuum facilities for studying astrophysical ices". Low Temperature Physics 50, nr 1 (1.01.2024): 66–72. http://dx.doi.org/10.1063/10.0023894.
Pełny tekst źródłaMoore, Marla H., i Reggie L. Hudson. "Production of Complex Molecules in Astrophysical Ices". Proceedings of the International Astronomical Union 1, S231 (21.03.2006): 247. http://dx.doi.org/10.1017/s1743921306007241.
Pełny tekst źródłaRocard, F., J. Bénit, J.-P. Bibrtng, D. Ledu i R. Meunier. "Erosion of ices: Physical and astrophysical discussion". Radiation Effects 99, nr 1-4 (wrzesień 1986): 97–104. http://dx.doi.org/10.1080/00337578608209617.
Pełny tekst źródłaStrazzulla, G. "Crystalline and amorphous structure of astrophysical ices". Low Temperature Physics 39, nr 5 (maj 2013): 430–33. http://dx.doi.org/10.1063/1.4807045.
Pełny tekst źródłaFörstel, M., P. Maksyutenko, B. M. Jones, B. J. Sun, A. H. H. Chang i R. I. Kaiser. "Synthesis of urea in cometary model ices and implications for Comet 67P/Churyumov–Gerasimenko". Chemical Communications 52, nr 4 (2016): 741–44. http://dx.doi.org/10.1039/c5cc07635h.
Pełny tekst źródłaRozprawy doktorskie na temat "Astrophysical ices"
Dissly, Richard W. Anicich Vincent G. Anicich Vincent G. Allen Mark Andrew. "Laboratory studies of astrophysical ices /". Diss., Pasadena, Calif. : California Institute of Technology, 1995. http://resolver.caltech.edu/CaltechETD:etd-10312007-083146.
Pełny tekst źródłaDawes, Anita. "Spectroscopic study of photon, ion and electron stimulated molecular synthesis in astrophysical ices". Thesis, University College London (University of London), 2003. http://oro.open.ac.uk/40046/.
Pełny tekst źródłaBychkova, Anna. "Energetic iοn prοcessing οf arοmatic mοlecules in the sοlid phase". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC236.
Pełny tekst źródłaFormed in the dense clouds, icy mantles are condensates of small molecules on solid grains. These icy mantles are promising sites for rich chemical processes, where complex organic molecules can form, as these mantles are continuously exposed to ionizing radiation. Once dense clouds transform into an accretion disc and eventually into a planetary system, these icy mantles may potentially contribute to the reservoir of the complex molecules of the planets.In this thesis, the effects of ion irradiation on two aromatic molecules, pyridine and pyrene were investigated. The samples were exposed to ion irradiation at the GANIL (Caen, France) and ATOMKI (Debrecen, Hungary) ion beam facilities. Their evolution was monitored using in-situ infrared spectroscopy. It was found that the initial structure (amorphous or crystalline) and the irradiation temperature do not affect the destruction cross section of pure pyridine. Additionally, it was observed that the local dose is not a key parameter as previously assumed. Indeed, since the destruction of pyrene caused by heavy ions, starting from C, is significantly greater than that caused by lighter ions such as H and He for the same deposited local dose. For both molecules, a significant increase in the destruction cross section was observed for decreasing molecule concentration in the water matrix. The half-life time of pyridine and pyrene in dense clouds was estimated to be around 13 and 20 millions of years, respectively. This suggests that once formed in these environments, they could survive and contribute to planetary formation
Holtom, Philip Derek. "Irradiation studies of astrophysical ice analogues". Thesis, University College London (University of London), 2005. http://discovery.ucl.ac.uk/1444790/.
Pełny tekst źródłaKorsmeyer, Julie. "Anthracroronene in Astrophysical Water-Ice Analogs". Scholarship @ Claremont, 2019. https://scholarship.claremont.edu/scripps_theses/1413.
Pełny tekst źródłaDing, Jing-Jie. "Irradiation of water ice and astrophysical implication". Caen, 2014. http://www.theses.fr/2014CAEN2056.
Pełny tekst źródłaIces can exist in our solar system for example on comets, the moons of Jupiter and Saturn, and trans-Neptunian objects. In the cold interstellar medium, they form thin layers on dust grains. Water (H2O) is the most abundant molecules in those ices, which are continuously exposed to the irradiation by cosmic rays, solar wind, and ions trapped in the magnetosphere of the giant planets. Simulation in the laboratory compared to telescopic observations can provide information to understand the large variety of radiation induced physicochemical processes. Therefore, we simulated the effects of swift heavy ion (cosmic ray analogs) and slow ion (solar wind, magnetosphere ions) irradiation of water ice at different beam lines of the GANIL accelerator facility. Fourier transform infrared spectroscopy (FTIR) was used to analyze the ices. The irradiation induced structural changes of water ice such as amorphization and compaction were studied. The efficiency to amorphize and compact the ice was established as a function of projectile stopping power with several swift heavy ions. Furthermore, by implantation of sulfur ions in water ice, the formation yield of sulfuric acid was measured and found to increase with projectile energy. From comparison to measure sulfur ion fluxes and sulfuric acid concentrations by the Galileo spacecraft, strong evidence was found that H2SO4 on Europa’s surface can be formed by sulfur ion implantation of magnetosphere ions in water ice. Finally, we also performed a first preliminary experiment to study the radiation induced chemistry with a carbonaceous solid substrate covered with a NH3+H2O ice mantle
SanfeÌlix, Maria Jose Cabrera. "Molecular modelling of water ice in atmospheric and astrophysical environments". Thesis, University of Liverpool, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415664.
Pełny tekst źródłaHettlage, Christian. "Lepton production in ice by scattering of astrophysical neutrinos at high energies". Doctoral thesis, [S.l.] : [s.n.], 2005. http://webdoc.sub.gwdg.de/diss/2005/hettlage.
Pełny tekst źródłaMuntean, E. A. "Low energy ion irradiation of astrophysical ice analogues : sputtering and molecule formation". Thesis, Queen's University Belfast, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.680064.
Pełny tekst źródłaDupuy, Rémi. "Photon and electron induced desorption from molecular ices Spectrally-resolved UV photodesorption of CH4 in pure and layered ices The efficient photodesorption of nitric oxide (NO) ices : a laboratory astrophysics study X-ray photodesorption from water ice in protoplanetary disks and X-ray-dominated regions". Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS068.
Pełny tekst źródłaThe deposition of energy in the form of electronic excitations in molecules condensed on cold surfaces (10-100 K) can lead to the desorption of some of these molecules. This basic surface science process has consequences in a variety of fields, two of which are of concern here : astrochemistry and vacuum dynamics. Photon and Electron-Induced desorption are studied in this manuscript for thin films of condensed molecules (ices), e.g. CO, H2O, NO or CH4. The first objective is to obtain a quantification of the desorption of the various desorbing species, and to look for the parameters that affect the efficiency of the process. The second objective is to understand the mechanisms of evolution and relaxation of the initial electronic excitations that lead to desorption. Photon-induced desorption is studied at LERMA using synchrotron radiation in the VUV range (5-14 eV) and soft X-ray range (520-600 eV). This allows to obtain spectrally-resolved information, which is crucial both for model implementation and fundamental understanding of the mechanisms. Electron-induced desorption is studied at CERN in the 150-2000 eV range. The results expand the available data on UV photodesorption and allow to determine the relevance of electron or X-ray desorption for astrochemistry. Progress has also been made on the understanding of mechanisms, particularly on the role of energy or particle transport from the bulk to the surface of the ice, on indirect desorption, or on the desorption of ions in the soft X-ray range. A new experimental set-up has also been developed at LERMA for laser desorption and laser spectroscopy experiments, allowing quantum-state and kinetic energy resolved measurements of desorbed molecules
Książki na temat "Astrophysical ices"
1939-, Klinger Jürgen, i North Atlantic Treaty Organization. Scientific Affairs Division., red. Ices in the solar system. Dordrecht: D. Reidel, 1985.
Znajdź pełny tekst źródłaB, Schmitt, Bergh C. de i Festou M, red. Solar system ices: Based on reviews presented at the international symposium "solar system ices" held in Toulouse, France, on March 27-30, 1995. Boston, MA: Kluwer Academic Publishers, 1998.
Znajdź pełny tekst źródłaGudipati, Murthy S. The Science of Solar System Ices. New York, NY: Springer New York, 2013.
Znajdź pełny tekst źródłaCalif.) The Science of Solar System Ices Workshop (2008 Oxnard. The Science of Solar System Ices (ScSSI): A cross-disciplinary workshop, May 5-8, 2008, Oxnard, California. Houston, Tex: Lunar and Planetary Institute, 2008.
Znajdź pełny tekst źródłaPoinsatte, Philip E. Convective heat transfer measurements from a NACA 0012 airfoil in flight and in the NASA Lewis icing research tunnel. [Washington, D.C.]: NASA, 1990.
Znajdź pełny tekst źródłaPoinsatte, Philip E. Convective heat transfer measurements from a NACA 0012 airfoil in flight and in the NASA Lewis icing research tunnel. [Washington, D.C.]: NASA, 1990.
Znajdź pełny tekst źródła(Editor), B. Schmitt, C. de Bergh (Editor) i M. Festou (Editor), red. Solar System Ices (Astrophysics and Space Science Library). Springer, 2007.
Znajdź pełny tekst źródłaGudipati, Murthy S., i Julie Castillo-Rogez. Science of Solar System Ices. Springer New York, 2012.
Znajdź pełny tekst źródłaGudipati, Murthy S., i Julie Castillo-Rogez. The Science of Solar System Ices. Springer, 2014.
Znajdź pełny tekst źródłaGudipati, Murthy S., i Julie Castillo-Rogez. The Science of Solar System Ices. Springer, 2012.
Znajdź pełny tekst źródłaCzęści książek na temat "Astrophysical ices"
Satorre, Miguel Ángel, Ramón Luna, Carlos Millán, Manuel Domingo i Carmina Santonja. "Density of Ices of Astrophysical Interest". W Laboratory Astrophysics, 51–69. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90020-9_4.
Pełny tekst źródłaMuñoz Caro, Guillermo M., i Rafael Martín Doménech. "Photon-Induced Desorption Processes in Astrophysical Ices". W Laboratory Astrophysics, 133–47. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90020-9_9.
Pełny tekst źródłaSatorre, M. A., G. Blanes, M. A. Hernández, C. Millán, M. Domingo i M. C. Santonja. "An Experimental Setup for the Characterization of Ices of Astrophysical Interest". W Highlights of Spanish Astrophysics II, 401. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-017-1776-2_125.
Pełny tekst źródłaLuna, R., M. A. Satorre, G. Blanes, M. C. Santonja, M. Domingo i O. Gomis. "Density Determination of Ices of Astrophysical Interest by Double-Laser Interferometry". W Highlights of Spanish Astrophysics III, 489. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-1778-6_132.
Pełny tekst źródłaPirronello, Valerio. "Physical and Chemical Effects Induced by Fast Ions in Ices of Astrophysical Interest". W Chemistry in Space, 263–303. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-009-0695-2_10.
Pełny tekst źródłaSchutte, W. A., L. J. Allamandola i S. A. Sandford. "Formation of Organic Molecules by Formaldehyde Reactions in Astrophysical Ices at Very Low Temperatures". W Astrochemistry of Cosmic Phenomena, 29–30. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2761-5_11.
Pełny tekst źródłaSamuelson, Robert. "Atmospheric Ices". W Astrophysics and Space Science Library, 749–72. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5252-5_31.
Pełny tekst źródłaSalama, Farid. "UV Photochemistry of Ices". W Astrophysics and Space Science Library, 259–79. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5252-5_11.
Pełny tekst źródłaDurham, W. B., S. H. Kirby i L. A. Stern. "Rheology of Planetary Ices". W Astrophysics and Space Science Library, 63–78. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5252-5_3.
Pełny tekst źródłaBallering, Nicholas P., L. Ilsedore Cleeves i Dana E. Anderson. "Simulating Protoplanetary Disk Ices". W European Conference on Laboratory Astrophysics ECLA2020, 253–57. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29003-9_29.
Pełny tekst źródłaStreszczenia konferencji na temat "Astrophysical ices"
Gavdush, A. A., F. Kruczkiewicz, B. M. Giuliano, B. Muller, G. A. Komandin, K. I. Zaytsev, A. V. Ivlev i P. Caselli. "THZ-IR DIELECTRIC SPECTROSCOPY OF ASTROPHYSICAL ICES: RECENT ACHIEVEMENTS AND CHALLENGES". W Terahertz and Microwave Radiation: Generation, Detection and Applications (ТЕRА-2023). Moscow: Our Style, 2023. http://dx.doi.org/10.59043/9785604953914_106.
Pełny tekst źródłaWoon, David E. "Ab Initio Quantum Chemical Studies of Reactions in Astrophysical Ices — Reactions Involving CH3OH, CO2, CO, and HNCO in H2CO/NH3/H2O Ices". W ASTROCHEMISTRY: From Laboratory Studies to Astronomical Observations. AIP, 2006. http://dx.doi.org/10.1063/1.2359569.
Pełny tekst źródłaGargouri, Yosra, Herve Petit, Patrick Loumeau, Baptiste Cecconi i Patricia Desgreys. "Compressed sensing for astrophysical signals". W 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS). IEEE, 2016. http://dx.doi.org/10.1109/icecs.2016.7841195.
Pełny tekst źródła