Gotowa bibliografia na temat „ARTIFICIAL MAGNETIC CONDUCTOR PLANE”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „ARTIFICIAL MAGNETIC CONDUCTOR PLANE”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "ARTIFICIAL MAGNETIC CONDUCTOR PLANE"
Park, I. Y., i D. Kim. "High-gain antenna using an intelligent artificial magnetic conductor ground plane". Journal of Electromagnetic Waves and Applications 27, nr 13 (5.08.2013): 1602–10. http://dx.doi.org/10.1080/09205071.2013.817957.
Pełny tekst źródłaWang, S., A. P. Feresidis, G. Goussetis i J. C. Vardaxoglou. "Low-profile resonant cavity antenna with artificial magnetic conductor ground plane". Electronics Letters 40, nr 7 (2004): 405. http://dx.doi.org/10.1049/el:20040306.
Pełny tekst źródłaYan, Sen, Ping Jack Soh i Guy A. E. Vandenbosch. "Low-Profile Dual-Band Textile Antenna With Artificial Magnetic Conductor Plane". IEEE Transactions on Antennas and Propagation 62, nr 12 (grudzień 2014): 6487–90. http://dx.doi.org/10.1109/tap.2014.2359194.
Pełny tekst źródłaKumar Pandey, Gaurav, Hari Shankar Singh i Manoj Kumar Meshram. "Investigations of triple band artificial magnetic conductor back plane with UWB antenna". Microwave and Optical Technology Letters 58, nr 8 (27.05.2016): 1900–1906. http://dx.doi.org/10.1002/mop.29943.
Pełny tekst źródłaAbdulbari, Ali Abdulateef, Sharul Kamal Abdul Rahim, Firas Abedi, Ping Jack Soh, Ali Hashim, Rami Qays, Sarosh Ahmad i Mohammed Yousif Zeain. "Single-Layer Planar Monopole Antenna-Based Artificial Magnetic Conductor (AMC)". International Journal of Antennas and Propagation 2022 (21.07.2022): 1–9. http://dx.doi.org/10.1155/2022/6724175.
Pełny tekst źródłaDewan, Raimi, M. K. A. Rahim, Mohamad Rijal Hamid i M. F. M. Yusoff. "Analysis of Wideband Antenna Performance over Dual Band Artificial Magnetic Conductor (AMC) Ground Plane". Applied Mechanics and Materials 735 (luty 2015): 273–77. http://dx.doi.org/10.4028/www.scientific.net/amm.735.273.
Pełny tekst źródłaYeo, J., i D. Kim. "Design of a Wideband Artificial Magnetic Conductor (AMC) Ground Plane for Low-Profile Antennas". Journal of Electromagnetic Waves and Applications 22, nr 16 (styczeń 2008): 2125–34. http://dx.doi.org/10.1163/156939308787522546.
Pełny tekst źródłaLibi Mol, V. A., i C. K. Aanandan. "Radar Cross Section Reduction of Low Profile Fabry-Perot Resonator Antenna Using Checker Board Artificial Magnetic Conductor". Advanced Electromagnetics 7, nr 2 (3.03.2018): 76–82. http://dx.doi.org/10.7716/aem.v7i2.686.
Pełny tekst źródłaFan, Fangfang, Xiao Fan, Xiaoyu Wang i Zehong Yan. "A Low-Profile Broadband Circularly Polarised Wide-Slot Antenna with an Artificial Magnetic Conductor Reflector". Applied Computational Electromagnetics Society 36, nr 6 (6.08.2021): 740–46. http://dx.doi.org/10.47037/2020.aces.j.360616.
Pełny tekst źródłade Cos, M. E., F. Las Heras i M. Franco. "Design of Planar Artificial Magnetic Conductor Ground Plane Using Frequency-Selective Surfaces for Frequencies Below 1 GHz". IEEE Antennas and Wireless Propagation Letters 8 (2009): 951–54. http://dx.doi.org/10.1109/lawp.2009.2029133.
Pełny tekst źródłaRozprawy doktorskie na temat "ARTIFICIAL MAGNETIC CONDUCTOR PLANE"
Visser, Hugo Hendrik. "An artificial magnetic ground-plane for a log-periodic antenna". Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4176.
Pełny tekst źródłaENGLISH ABSTRACT: This paper presents the implementation of an artificial magnetic ground-plane with a low profile Log-periodic Dipole Array (LPDA) antennas. After the properties of three typical Electromagnetic Bandgap (EBG) structures are investigated and their bandwidth properties are studied, a mechanism is presented to improve the band-width over which the EBG surface acts as a perfect magnetic conductor (PMC). A low profile LPDA is modeled above this surface and the results indicate an improved band-width region. Compared with a LPDA in free space the frequency band is shifted higher by the EBG surface and the gain pattern is shifted from a horizontal orientation to a vertical orientation.
AFRIKAANSE OPSOMMING: Hierdie dokument stel voor die implementering van kunsmatige magnetiese grondvlakke met Logaritmiese Periodiese Dipool Samestelling (LPDS) antennas. Die eienskappe van drie tipiese Elektromagnetiese Bandgaping (EBG) strukture word ondersoek en hul bandwydte eienskappe word bestudeer. ’n Meganisme word voorgestel om die bandwydte te verbeter waar die EBG oppervlakte soos n perfekte magnetiese geleier optree. ’n Lae profiel LPDS word bo hierdie oppervlakte geplaas. Die resultate dui aan ’n verbetering in the bandwydte. In vergelyking met ’n LPDS in vrye ruimte skuif die frekwensie band ho¨er as gevolg van die EBG oppervlakte en die aanwins patroon skuif van ’n horisontale orientasie na ’n vertikale orientasie.
Almutawa, Ahmad Tariq. "Log-Periodic Microstrip Patch Antenna Miniaturization Using Artificial Magnetic Conductor Surfaces". Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/2982.
Pełny tekst źródłaKostka, Darryl. "Enhancement of printed inductors using artificial magnetic conductor (AMC) surfaces for millimeter-wave applications". Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=40815.
Pełny tekst źródłaLes inducteurs intégrés sont parmi les éléments élémentaires les plus utilisés dans la conception de systèmes électroniques modernes. Cependant, ils souffrent généralement d’une faible qualité et d’une large consomption d’espace, limitant ainsi les performances du système et compliquent donc l’intégration de systèmes compactes. Plusieurs efforts en recherche ont été consacrés au développement d’inducteurs de haute qualité miniatures. Une de ces méthodes proposent l’utilisation d’un Conducteur Magnétique Artificiel (CMA) comme surface pour améliorer la performance de l’inducteur en créant une deuxième région inductive ainsi permettant la réutilisation de l’inducteur. Il peut être démontré théoriquement, par la théorie des images, qu’un réflecteur CMA peut être utilisé pour doubler l’inductance total d’un inducteur. Par conséquent, afin de valider ce concept, deux designs de surfaces CMA sont investigués pour l’intégration sur puce (on-chip) et sur carte (PCB). Les surfaces CMA sont ensuite intégrées avec des composantes d’inducteurs en boucle standards afin de justifier leurs avantages en termes de performances par les résultats expérimentaux obtenus par ces prototypes. Finalement, le caractère pratique de cette approche est démontré par l’application d’un Oscillateur (VCO) d’ondes-mm en remplaçant le réservoir-LC par une version miniaturisée d’un inducteur par CMA. Pour ce faire, les prototypes d’Oscillateur-LC à ondes-mm sont conçus, fabriqués et caractérisé de façon expérimentale.
Jamaly, Nima. "Comparative Study of Different Excitation Techniques for Microstrip-like Structures over an Infinite Perfect Electric Conductor Plane". Thesis, University of Gävle, Department of Technology and Built Environment, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-326.
Pełny tekst źródłaThe overall goal of the thesis is to establish detailed comparisons among different well-known models of excitations in their application on Microstrip-like Monopoles. Comparisons are made over the input impedances predicted by these excitations. In this way, the Galerkin’s version of the Method of Moment is applied and rooftops functions are chosen as our basis/weighting functions. Different excitation models have their influence over the excitation vector and a unique MoM matrix is used to give input impedances. We shall elicit the effects of several parameters over relative input self/mutual impedances derived from these excitation models and finally make conclusions about their differences in anticipating the input Resistance, input Reactance and also resonance frequencies.
Wang, Shenhong. "High-gain planar resonant cavity antennas using metamaterial surfaces". Thesis, Loughborough University, 2006. https://dspace.lboro.ac.uk/2134/12481.
Pełny tekst źródłaGuo, Yunchuan. "Analysis and design of novel electromagnetic metamaterials". Thesis, Loughborough University, 2006. https://dspace.lboro.ac.uk/2134/7864.
Pełny tekst źródłaMeng, Fanhong. "Développement d’antennes à base de structures métamatériaux pour les applications aéronautiques (GPS/DME, bande L) et de communications haut débit (en bade E – 80 GHz)". Thesis, Paris 10, 2015. http://www.theses.fr/2015PA100203.
Pełny tekst źródłaThe work presented in this manuscript is related to the design and development of antennas based on artificial structures - metamaterials. The first designed and built antenna is a GPS and DME dual-function in the L (~ 1GHz). It is an antenna designed with polarization and spectral diversities for aeronautical applications. The work is within the MSIE project of ASTHEC cluster for which our laboratory (LEME) was very active. The industrial partners of the project are EADS/IW, Dassault Aviation, INEO-Defense SATIMO. The results show the feasibility of a single antenna having simultaneously two functions with a diversity of polarization and spectral band. The use of metamaterials enabled in particular the preservation of circular polarization of the GPS antenna on the bands ranging from L1 to L2. The DME function was consolidated with the same gain.The second antenna is an antenna Fabry-Perot cavity employing a partially reflective structure (PRS) Double-layer. We have demonstrated by numerical simulation and experimental characterization, the physical phenomenon of inversion phase of the reflection coefficient PRS. We obtain a positive gradient of the phase over a broad band of 5 GHz around 80GHz. Thanks to this new profile obtained by the PRS metamaterial structure, it has a linear advance of the phase which compensates for the delay of the Fabry-Perot cavity. Thus the cavity resonance conditions are maintained over a wide band, 5GHz. We demonstrate that the implementation of this structure with unique features allows a highly directive antenna cavity over a very wide spectral band 5GHz. The performance are a directivity of 35-40 dBi over 5 GHz, a perfect adaptation (gain ~ directivity) with very few primary sources
Raimbault, Narcisse. "Antenne hélice compacte directive à polarisation circulaire pour dispositif RFID". Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S009/document.
Pełny tekst źródłaOver the past 20 years, the RFID (Radio Frequency Identification) technology is having a huge expansion. Nowadays, it is frequently used in different areas as the health, the security and the logistic. A lot of researches are ongoing on this topic, especially in order to reduce the reading zone of the readers and to locate the tags. This thesis focuses on the development of new antennas for Readers RFID devices and is part of the SPINNAKER project supported by OSEO. The antennas requirements are circular polarization, high directivity and gain with low profile. The helix antennas meet all these requirements except the axial length. In this manuscript, we propose three solutions to reduce the helix antenna axial length. The first one uses a cylindrical or conical optimal reflector to reduce the length by four. This reduction affects directly the surface witch increases up to 2.3λ. The second solution uses the helix antenna as a circular polarization feed for a Fabry-Perot (FP) cavity. The final antenna presents a cavity height of 0.5λ and a 2λ diameter. The last solution conserves the FP cavity in which we include an Artificial Magnetic Conductor (AMC) to reduce the cavity height to 0.25λ. All these solutions are validated by measurements
Kristou, Nebil. "Étude et conception de métamatériaux accordables pour la miniaturisation d’antennes aux fréquences micro-ondes". Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S016/document.
Pełny tekst źródłaAntennas are now very integrated in several connected systems like cars, airplanes and trains. Many antenna miniaturization techniques exist and all go through a compromise between size and performance (bandwidth and/or radiation efficiency). For the systems mentioned above, the antennas are often placed near a metallic reflector (vehicle roof, aircraft cabin). Within this context, Artificial Magnetic Conductors (AMC) present an attractive reflector for low profile antennas which can take advantage of intrinsic zero reflection phase response to boost antenna performance without the need for thick quarter wave backplane. However, for sub-GHz applications (RFID, LTE, PMR ...), AMC are limited by the size of the unit cells necessary for their implementation (λg/4) as well as their reduced operating bandwidth. AMC miniaturization makes their use compatible with small antennas. Adding tunability restores the possibility of adjusting the operating frequency over a large bandwidth. This PhD thesis proposes to study and develop a new electrically small, low-profile antenna based on miniaturized and tunable AMC for the NB-IoT standard in low LTE band (700 MHz – 960 MHz)
Silva, Pimenta Marcio. "Antennes souples à base de métamatériaux de type conducteurs magnétiques artificiels pour les standards de systèmes de géolocalisation". Phd thesis, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00923200.
Pełny tekst źródłaCzęści książek na temat "ARTIFICIAL MAGNETIC CONDUCTOR PLANE"
Dewan, R., M. K. A. Rahim, M. R. Hamid, N. A. Samsuri, M. F. M. Yusoff, B. D. Bala i M. E. Jalil. "Dual Band Stacked Artificial Magnetic Conductor with Dipole Antenna". W Theory and Applications of Applied Electromagnetics, 197–205. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17269-9_21.
Pełny tekst źródłaPanda, Prakash Kumar, i Debalina Ghosh. "High Gain Slot Antenna by Using Artificial Magnetic Conductor". W Lecture Notes in Networks and Systems, 272–77. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2774-6_34.
Pełny tekst źródłaKumar, Ashok, Amrita Dixit, Ashok Kumar i Arjun Kumar. "Studies of Various Artificial Magnetic Conductor for 5G Applications". W Lecture Notes in Electrical Engineering, 523–30. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2926-9_57.
Pełny tekst źródłaMadhav, B. T. P., T. V. Rama Krishna, K. Datta Sri Lekha, D. Bhavya, V. S. Dharma Teja, T. Mahender Reddy i T. Anilkumar. "Multiband Semicircular Planar Monopole Antenna with Spiral Artificial Magnetic Conductor". W Lecture Notes in Electrical Engineering, 599–607. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7329-8_61.
Pełny tekst źródłaKassim, S., Hasliza A. Rahim, Mohamedfareq Abdulmalek, R. B. Ahmad, M. H. Jamaluddin, M. Jusoh, D. A. Mohsin i in. "UWB Antenna with Artificial Magnetic Conductor (AMC) for 5G Applications". W Lecture Notes in Networks and Systems, 239–50. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3172-9_24.
Pełny tekst źródłaGirish, K. B. N., Pani Prithvi Raj, M. Vijaya Krishna Teja, S. Anand i D. Sriram Kumar. "A Novel Proposal of Artificial Magnetic Conductor Loaded Rectangular Patch Antenna for Wireless Applications". W Lecture Notes in Electrical Engineering, 467–75. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2728-1_43.
Pełny tekst źródłaKumar, Ashok, Arjun Kumar, Ashok Kumar i M. V. Karthikeyan. "Design and Investigation of Octagonal Patch Antenna Using Artificial Magnetic Conductor for 5G Applications". W Lecture Notes in Electrical Engineering, 393–400. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2926-9_44.
Pełny tekst źródłaRaviteja, G. Viswanadh. "A Quad-Port Orthogonal Wideband MIMO Antenna Employing Artificial Magnetic Conductor for 60 GHz Millimeter-Wave Applications". W Smart Antennas, 179–92. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-76636-8_14.
Pełny tekst źródłaJoshi, Abhishek, i Rahul Singhal. "Probe-Fed Polygonal Patch UWB Antennas". W UWB Technology - New Insights and Developments [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.110369.
Pełny tekst źródłaDiaz, Rodolfo E., i Sergio A. Clavijo. "Artificial Magnetic Conductor". W Encyclopedia of RF and Microwave Engineering. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471654507.eme551.
Pełny tekst źródłaStreszczenia konferencji na temat "ARTIFICIAL MAGNETIC CONDUCTOR PLANE"
Shiji Pan, E. R. Iglesias i F. Capolino. "Artificial magnetic conductor from a layer of dogbone-shaped conductors over a ground plane". W 2010 IEEE International Symposium Antennas and Propagation and CNC-USNC/URSI Radio Science Meeting. IEEE, 2010. http://dx.doi.org/10.1109/aps.2010.5562260.
Pełny tekst źródłavan den Biggelaar, A. J., U. Johannsen i A. B. Smolders. "Angular Stable Artificial Magnetic Conductor for Oblique Incident TM Plane Waves". W Loughborough Antennas & Propagation Conference 2018 (LAPC 2018). Institution of Engineering and Technology, 2018. http://dx.doi.org/10.1049/cp.2018.1437.
Pełny tekst źródłaDewan, R., S. K. A. Rahim, S. F. Ausordin, M. Z. M. Nor i B. M. Saad. "Crescent moon-shaped artificial magnetic conductor ground plane for patch antenna application". W 2013 IEEE Symposium on Wireless Technology & Applications (ISWTA). IEEE, 2013. http://dx.doi.org/10.1109/iswta.2013.6688782.
Pełny tekst źródłaSoh, Ping Jack, Sen Yan i Guy A. E. Vandenbosch. "SAR mitigation of textile antenna via an artificial magnetic conductor (AMC) plane". W 2015 1st URSI Atlantic Radio Science Conference (URSI AT-RASC). IEEE, 2015. http://dx.doi.org/10.1109/ursi-at-rasc.2015.7303228.
Pełny tekst źródłaQi Luo, Henrique M. Salgado, Artur M. Moura i Jose R. Pereira. "Dual-band antenna design using an EBG Artificial Magnetic Conductor ground plane". W Propagation Conference (LAPC). IEEE, 2008. http://dx.doi.org/10.1109/lapc.2008.4516905.
Pełny tekst źródłaMehrabani, Ali M., i Lotfollah Shafai. "A sual-arm Archimedean spiral antenna over a low-profile artificial magnetic conductor ground plane". W 2009 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Science Meeting (ANTEM/URSI 2009). IEEE, 2009. http://dx.doi.org/10.1109/antemursi.2009.4805090.
Pełny tekst źródłaXie, M. T., Q. G. Guo i K. M. Huang. "Design of a novel Artificial Magnetic Conductor plane and its application for low-profile dipole". W 2010 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2010. http://dx.doi.org/10.1109/icmmt.2010.5525228.
Pełny tekst źródłaForoozesh, Alireza, i Lotfollah Shafai. "Application of the artificial magnetic conductor ground plane for enhancement of antenna input impedance bandwidth". W 2009 IEEE Antennas and Propagation Society International Symposium (APSURSI). IEEE, 2009. http://dx.doi.org/10.1109/aps.2009.5171694.
Pełny tekst źródłaYuan, Yan-Ning, Jiao-Jie Feng i Xiao-Li Xi. "Design of wearable antenna with compact artificial magnetic conductor reflecting plate". W 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP). IEEE, 2017. http://dx.doi.org/10.1109/apcap.2017.8420366.
Pełny tekst źródłaSudesh Darak, Mayur, S. Anand i D. Sriram Kumar. "Bandwidth enhancement of a patch antenna by loading complementary K-shaped artificial magnetic conductors in ground plane". W 2014 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE). IEEE, 2014. http://dx.doi.org/10.1109/apace.2014.7043786.
Pełny tekst źródła