Gotowa bibliografia na temat „Articular cartilage”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Articular cartilage”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Articular cartilage"

1

Wardale, R. J., i V. C. Duance. "Quantification and immunolocalisation of porcine articular and growth plate cartilage collagens". Journal of Cell Science 105, nr 4 (1.08.1993): 975–84. http://dx.doi.org/10.1242/jcs.105.4.975.

Pełny tekst źródła
Streszczenie:
The collagens of growth plate and articular cartilage from 5–6 month old commercial pigs were characterised. Growth plate cartilage was found to contain less total collagen than articular cartilage as a proportion of the dry weight. Collagen types I, II, VI, IX and XI are present in both growth plate and articular cartilage whereas type X is found exclusively in growth plate cartilage. Types III and V collagen could not be detected in either cartilage. Type I collagen makes up at least 10% of the collagenous component of both cartilages. There are significant differences in the ratios of the quantifiable collagen types between growth plate and articular cartilage. Collagen types I, II, and XI were less readily extracted from growth plate than from articular cartilage following pepsin treatment, although growth plate cartilage contains less of the mature collagen cross-links, hydroxylysyl-pyridinoline and lysyl-pyridinoline. Both cartilages contain significant amounts of the divalent reducible collagen cross-links, hydroxylysyl-ketonorleucine and dehydro-hydroxylysinonorleucine. Immunofluorescent localisation indicated that type I collagen is located predominantly at the surface of articular cartilage but is distributed throughout the matrix in growth plate. Types II and XI are located in the matrix of both cartilages whereas type IX is predominantly pericellular in the calcifying region of articular cartilage and the hypertrophic region of the growth plate. Collagen type VI is located primarily as a diffuse area at the articular surface.
Style APA, Harvard, Vancouver, ISO itp.
2

Wardale, R. J., i V. C. Duance. "Characterisation of articular and growth plate cartilage collagens in porcine osteochondrosis". Journal of Cell Science 107, nr 1 (1.01.1994): 47–59. http://dx.doi.org/10.1242/jcs.107.1.47.

Pełny tekst źródła
Streszczenie:
The articular and growth plate cartilages of osteochondrotic pigs were examined and compared with those from clinically normal animals. Both types of osteochondrotic cartilage showed considerable localised thickening apparently due to a lack of ossification. Histological examination of cartilage lesions demonstrated a breakdown in the normal pattern of chondrocyte maturation. Articular cartilage lesions lacked mature clones of chondrocytes in the calcifying region. Growth plate cartilage showed an accumulation of disorganised hypertrophic chondrocytes rather than the well-defined columns seen in normal tissue. The overall percentages of collagen in osteochondrotic lesions from both articular and growth plate cartilage were significantly reduced compared with levels in unaffected cartilage. There were substantial increases in the proportion of type I collagen in lesions from both osteochondrotic articular and growth plate cartilages and a reduction in the proportion of type II collagen. Type X collagen was detected in osteochondrotic but not normal articular cartilage. The proportion of type X collagen was unchanged in osteochondrotic growth plate cartilage. The levels of the collagen cross-links, hydroxylysylpyridinoline, hydroxylysyl-ketonorleucine and dehydrohydroxylysinonorleucine were radically reduced in samples from osteochondrotic growth-plate cartilage lesions when compared with normal tissue. Less dramatic changes were observed in articular cartilage although there was a significant decrease in the level of hydroxylysylketonorleucine in osteochondrotic lesions. Immunofluorescence examination of osteochondrotic lesions showed a considerable disruption of the organisation of the collagenous components within both articular and growth-plate cartilages. Normal patterns of staining of types I and VI collagen seen at the articular surface in unaffected tissue were replaced by a disorganised, uneven stain in osteochondrotic articular cartilage lesions. Incomplete removal of cartilage at the ossification front of osteochondrotic growth plate was demonstrated by immunofluorescence staining of type IX collagen. Type X collagen was produced in the matrix of the calcifying region of osteochondrotic articular cartilage by small groups of hypertrophic chondrocytes, but was not detected in normal articular cartilage. The distribution of type X collagen was unchanged in osteochondrotic growth plate cartilage.
Style APA, Harvard, Vancouver, ISO itp.
3

Gong, Huchen, Yutao Men, Xiuping Yang, Xiaoming Li i Chunqiu Zhang. "Experimental Study on Creep Characteristics of Microdefect Articular Cartilages in the Damaged Early Stage". Journal of Healthcare Engineering 2019 (13.11.2019): 1–9. http://dx.doi.org/10.1155/2019/8526436.

Pełny tekst źródła
Streszczenie:
Traumatic joint injury is known to cause cartilage deterioration and osteoarthritis. In order to study the mechanical mechanism of damage evolution on articular cartilage, taking the fresh porcine articular cartilage as the experimental samples, the creep experiments of the intact cartilages and the cartilages with different depth defect were carried out by using the noncontact digital image correlation technology. And then, the creep constitutive equations of cartilages were established. The results showed that the creep curves of different layers changed exponentially and were not coincident for the cartilage sample. The defect affected the strain values of the creep curves. The creep behavior of cartilage was dependent on defect depth. The deeper the defect was, the larger the strain value was. The built three-parameter viscoelastic constitutive equation had a good correlation with the experimental results and could predict the creep performance of the articular cartilage. The creep values of the microdefective cartilage in the damaged early stage were different from the diseased articular cartilage. These findings pointed out that defect could accelerate the damage of cartilage. It was helpful to study the mechanical mechanism of damage evolution.
Style APA, Harvard, Vancouver, ISO itp.
4

Sharifi, Ali Mohammad, Ali Moshiri i Ahmad Oryan. "Articular cartilage". Current Orthopaedic Practice 27, nr 6 (2016): 644–65. http://dx.doi.org/10.1097/bco.0000000000000425.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

McCarty, Eric C. "Articular Cartilage". Clinics in Sports Medicine 36, nr 3 (lipiec 2017): i. http://dx.doi.org/10.1016/s0278-5919(17)30039-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Rodkey, William G. "Articular cartilage". Journal of Equine Veterinary Science 17, nr 2 (luty 1997): 80. http://dx.doi.org/10.1016/s0737-0806(97)80334-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Miller, Mark D. "Articular Cartilage". Clinics in Sports Medicine 36, nr 3 (lipiec 2017): xiii—xiv. http://dx.doi.org/10.1016/j.csm.2017.04.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Gradisar, Ivan A., i James A. Porterfield. "Articular cartilage". Topics in Geriatric Rehabilitation 4, nr 3 (kwiecień 1989): 1–9. http://dx.doi.org/10.1097/00013614-198904000-00004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Lees, Deborah, i Paul Partington. "Articular cartilage". Orthopaedics and Trauma 30, nr 3 (czerwiec 2016): 265–72. http://dx.doi.org/10.1016/j.mporth.2016.04.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Simon, Timothy M., i Douglas W. Jackson. "Articular Cartilage". Sports Medicine and Arthroscopy Review 26, nr 1 (marzec 2018): 31–39. http://dx.doi.org/10.1097/jsa.0000000000000182.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Articular cartilage"

1

Getgood, Alan Martin John. "Articular cartilage tissue engineering". Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608764.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Gratz, Kenneth R. "Biomechanics of articular cartilage defects". Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3284116.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--University of California, San Diego, 2007.
Title from first page of PDF file (viewed January 9, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
Style APA, Harvard, Vancouver, ISO itp.
3

Arkill, Kenton Paul. "Mass transport in articular cartilage". Thesis, University of Exeter, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.421565.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Burgin, Leanne Victoria. "Impact loading of articular cartilage". Thesis, University of Aberdeen, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288339.

Pełny tekst źródła
Streszczenie:
Impact loads have been implicated in the initiation of secondary osteoarthritis but in the absence of defined injury this is difficult to rest rigorously.  The response to controlled impacts of samples of cartilage and bone in isolation and together, may yield valuable insights into how tissue properties may influence degenerative changes associated with osteoarthritis. A rigid instrumented drop tower was constructed and interfaced to a LabVIEW software oscilloscope modified to capture and store data to disk.  Controlled impact loads were applied to cores of articular cartilage, both isolated and in situ on the underlying bone or bonded to substrates of different material properties.  Bovine tissue from the carpometacarpal joint and human cartilage from elderly femoral heads was used.  The response of the samples was investigated in terms of a dynamic stiffness, energy absorbed and coefficient of restitution.  In addition the quasistatic modulus was measured from compression tests in order to compare the values for the stiffness of cartilage and bone at different rates of stress and strain.  Composition analysis was then performed on human cartilage samples to investigate if there was any correlation between the biochemical constituents and mechanical factors. The dynamic stiffness of the cartilage samples was governed by peak stress and did not show a high sensitivity to strain rate.  Cartilage had good force attenuating properties in situ on bone and the substrates.  The greater volume of the stiffer underlying substrate dominated the response of the composite samples.  For the human cartilage samples the dynamic stiffness was most correlated to percentage collagen whereas the quasistatic modulus was most correlated with water content.  Overall the biochemical composition was a poor predictor of stiffness which indicates the importance of interactions between the matrix constituents in the tissue response to an applied load.
Style APA, Harvard, Vancouver, ISO itp.
5

Rowles, Christopher. "Visualisation of Articular Cartilage Microstructure". Thesis, Curtin University, 2016. http://hdl.handle.net/20.500.11937/52984.

Pełny tekst źródła
Streszczenie:
This thesis developed image processing techniques enabling the detection and segregation of biological three dimensional images into its component features based upon shape and relative size of the features detected. The work used articular cartilage images and separated fibrous components from the cells and background noise. Measurement of individual components and their recombination into a composite image are possible. Developed software was used to analyse the development of hyaline cartilage in developing sheep embryos.
Style APA, Harvard, Vancouver, ISO itp.
6

Girdler, N. M. "The role of mandibular condylar cartilage in articular cartilage repair". Thesis, King's College London (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309110.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Chan, Alex Dart Ming. "Neurogenic modulation of articular cartilage degeneration". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ41123.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Covert, Rebeccah Jean. "Durability evaluation of articular cartilage prostheses". Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/17596.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Goldsmith, Andrew Alan John. "Biphasic modelling of synthetic articular cartilage". Thesis, University of Bath, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321846.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Ardill, Jennifer Maureen. "Optical measurement of articular cartilage roughness". Thesis, Queen's University Belfast, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241325.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Articular cartilage"

1

Smith, David W., Bruce S. Gardiner, Lihai Zhang i Alan J. Grodzinsky. Articular Cartilage Dynamics. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-1474-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Cole, Brian J., i M. Mike Malek. Articular Cartilage Lesions. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-0-387-21553-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Workshop Conference Hoechst-Werk Albert (1985 Wiesbaden, Germany). Articular cartilage biochemistry. Redaktorzy Kuettner Klaus E, Schleyerbach Rudolf i Hascall Vincent C. New York: Raven Press, 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Athanasiou, K. A. Articular cartilage tissue engineering. San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA): Morgan & Claypool Publishers, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Gahunia, Harpal K., Allan E. Gross, Kenneth P. H. Pritzker, Paul S. Babyn i Lucas Murnaghan, red. Articular Cartilage of the Knee. New York, NY: Springer New York, 2020. http://dx.doi.org/10.1007/978-1-4939-7587-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Argatov, Ivan, i Gennady Mishuris. Contact Mechanics of Articular Cartilage Layers. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20083-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Rodrìguez-Merchán, E. Carlos, red. Articular Cartilage Defects of the Knee. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2727-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

1964-, Hendrich Christian, Nöth Ulrich 1967- i Eulert Jochen, red. Cartilage surgery and future perspectives. Berlin: Springer, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

D, Brandt Kenneth, red. Cartilage changes in osteoarthritis. Indianapolis, Ind: Indiana University School of Medicine, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Tos, Mirko. Cartilage tympanoplasty. Stuttgart: Thieme, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Articular cartilage"

1

Flik, Kyle R., Nikhil Verma, Brian J. Cole i Bernard R. Bach. "Articular Cartilage". W Cartilage Repair Strategies, 1–12. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-343-1_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Pavelka, Margit, i Jürgen Roth. "Articular Cartilage". W Functional Ultrastructure, 294–95. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-211-99390-3_151.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Smith, David W., Bruce S. Gardiner, Lihai Zhang i Alan J. Grodzinsky. "Cartilage Tissue Homeostasis". W Articular Cartilage Dynamics, 65–243. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1474-2_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Smith, David W., Bruce S. Gardiner, Lihai Zhang i Alan J. Grodzinsky. "Cartilage Tissue Dynamics". W Articular Cartilage Dynamics, 245–309. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1474-2_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Shah, Nehal, i Hiroshi Yoshioka. "Imaging of Articular Cartilage". W Cartilage Restoration, 17–37. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-0427-9_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Smith, David W., Bruce S. Gardiner, Lihai Zhang i Alan J. Grodzinsky. "Introduction to Articular Cartilage". W Articular Cartilage Dynamics, 1–63. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1474-2_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Smith, David W., Bruce S. Gardiner, Lihai Zhang i Alan J. Grodzinsky. "Lubrication, Friction, and Wear in Diarthrodial Joints". W Articular Cartilage Dynamics, 311–59. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1474-2_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Smith, David W., Bruce S. Gardiner, Lihai Zhang i Alan J. Grodzinsky. "A Systems Approach to Articular Cartilage". W Articular Cartilage Dynamics, 361–428. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1474-2_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Smith, David W., Bruce S. Gardiner, Lihai Zhang i Alan J. Grodzinsky. "Osmotic Pressure, Solid Stress, and the Diffuse Double Layer". W Articular Cartilage Dynamics, 429–67. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1474-2_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Smith, David W., Bruce S. Gardiner, Lihai Zhang i Alan J. Grodzinsky. "Theory for Modeling Articular Cartilage". W Articular Cartilage Dynamics, 469–560. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1474-2_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Articular cartilage"

1

Goyal, Neeru, i Madhur Gupta. "A Study of Osteoarthritic Human Femoral Articular Cartilage Osteoarthritic Femoral Articular Cartilage". W Annual International Conference on Microscopic and Macroscopic Anatomy. Global Science & Technology Forum (GSTF), 2014. http://dx.doi.org/10.5176/2382-6096_cmma14.10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Zueger, Benno J., Beat Ott, P. M. Mainil-Varlet, Thomas Schaffner, Jean-Francois Clemence, Heinz P. Weber i Martin Frenz. "Laser soldering of articular cartilage". W BiOS 2001 The International Symposium on Biomedical Optics, redaktorzy R. Rox Anderson, Kenneth E. Bartels, Lawrence S. Bass, C. Gaelyn Garrett, Kenton W. Gregory, Abraham Katzir, Nikiforos Kollias i in. SPIE, 2001. http://dx.doi.org/10.1117/12.427791.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Yang, Xiao-Hong, Timon Cheng-Yi Liu, Shao-Jie Liu, Jian-Rong Tan, Yan Shen i Pie-Hong Liang. "Photobiomodulation on Articular Cartilage Repair". W 2007 IEEE/ICME International Conference on Complex Medical Engineering. IEEE, 2007. http://dx.doi.org/10.1109/iccme.2007.4381919.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Murakami, Teruo, Nobuo Sakai, Yoshinori Sawae, Itaru Ishikawa, Natsuko Hosoda, Emiko Suzuki i Jun Honda. "Biomechanical Aspects of Natural Articular Cartilage and Regenerated Cartilage". W In Commemoration of the 1st Asian Biomaterials Congress. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812835758_0028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Melas, I. N., A. D. Chairakaki, A. Mitsos, Z. Dailiana, C. G. Provatidis i L. G. Alexopoulos. "Modeling signaling pathways in articular cartilage". W 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011. http://dx.doi.org/10.1109/iembs.2011.6090630.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Ardill, Jennifer M., N. J. Barton, W. G. Kernohan i R. A. B. Mollan. "Quantitative assessment of articular cartilage roughness". W OE/LASE'93: Optics, Electro-Optics, & Laser Applications in Science& Engineering, redaktor Halina Podbielska. SPIE, 1993. http://dx.doi.org/10.1117/12.155722.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kumar, Rajesh, Catharina Davies, Jon Drogset i Magnus Lilledahl. "Multiphoton microscopy of osteoarthritic articular cartilage". W Novel Techniques in Microscopy. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/ntm.2017.nw4c.4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Rennie, A. C., i W. G. Sawyer. "Tribological Investigation of Porcine Articular Cartilage". W World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-64382.

Pełny tekst źródła
Streszczenie:
This poster examines the tribological properties and effective elastic modulus of porcine articular cartilage plugs. Two methods of obtaining an effective elastic modulus are explored for the different initial material conditions during the indentation loading and unloading. The average values of coefficient of friction varied from 0.04–0.14, but ended with a steady-state average of 0.06. It was validated that increasing pressure during sliding produces an increase in friction coefficient. From a contact model fit to the loading region of the indentation curve, effective elastic modulus had an average value of 300 MPa, which agrees with existing literature. From an examination of the linear portion of the unloading region of the indentation curve, the effective elastic modulus was an average of 8.9 MPa. A preliminary explanation for this is that before loading, a bulk material is present, but pressure effects could evacuate some of the interstitial fluid, leaving in the unloading curve an effective matrix without fluid.
Style APA, Harvard, Vancouver, ISO itp.
9

Folkesson, Jenny, Erik Dam, Paola Pettersen, Ole F. Olsen, Mads Nielsen i Claus Christiansen. "Locating articular cartilage in MR images". W Medical Imaging, redaktorzy J. Michael Fitzpatrick i Joseph M. Reinhardt. SPIE, 2005. http://dx.doi.org/10.1117/12.595665.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Smith, Robert Lane. "Mechanical Loading and Articular Cartilage Metabolism". W ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2520.

Pełny tekst źródła
Streszczenie:
Abstract Articular cartilage provides diarthrodial joints with a loading-bearing surface that ensures functional motility. The physical characteristics of articular cartilage originate with the highly organized matrix of extracellular macromolecules that provide structural elements to the tissue. The matrix specialization rests with specific proteins produced by the cartilage cells, the chondrocytes that undergo extensive post-translational modification through addition of sulfated glycosaminoglycan and oligosaccharides. The matrix proteins fall into three major categories, the collagens, the proteoglycans and the glycoproteins, with each group contributing unique properties to cartilage form and function.
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Articular cartilage"

1

Huard, Johnny. Articular Cartilage Repair Through Muscle Cell-Based Tissue Engineering. Fort Belvoir, VA: Defense Technical Information Center, marzec 2011. http://dx.doi.org/10.21236/ada552048.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

de Sousa, Eduardo, Renata Matsui, Leonardo Boldrini, Leandra Baptista i José Mauro Granjeiro. Mesenchymal stem cells for the treatment of articular cartilage defects of the knee: an overview of systematic reviews. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, grudzień 2022. http://dx.doi.org/10.37766/inplasy2022.12.0114.

Pełny tekst źródła
Streszczenie:
Review question / Objective: Population: adults (aged between 18 and 50 years) with traumatic knee lesions who underwent treatment with mesenchymal stem cells; Intervention: defined by the treatment with mesenchymal stem cells; The comparison group: treatment with autologous chondrocytes or microfracture treatments; Primary outcome: formation of cartilage neo tissue in the defect area, determined by magnetic resonance imaging (MRI) or by direct visualization in second-look knee arthroscopy.; Secondary outcomes: based on clinical scores such as visual analog scale (VAS) for pain, Western Ontario and McMaster universities score (WOMAC), knee society score (KSS), Tegner and Lysholm.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii