Gotowa bibliografia na temat „Argon”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Argon”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Argon"

1

Romero, Luciano, Roberto Santorelli, Edgar Sánchez García, Thorsten Lux, Michael Leyton, Silvestro di Luise, Pablo García Abia i in. "Experimental Study of the Positive Ion Feedback from Gas to Liquid in a Dual-Phase Argon Chamber and Measurement of the Ion Mobility in Argon Gas". Universe 8, nr 2 (21.02.2022): 134. http://dx.doi.org/10.3390/universe8020134.

Pełny tekst źródła
Streszczenie:
The dynamics of the positive ions created by particle interactions inside argon time projection chambers plays an important role in characterizing the next generation of massive detectors planned for the direct search for dark matter and the study of neutrino properties. We have constructed a 1 L liquid argon chamber (ARION: ARgon ION experiment) with a high voltage pulse generator capable of injecting, in a controlled manner, a sizeable ion current into the drift region. This chamber is capable of reproducing a volume charge similar to that found in large detectors, allowing its effects to be studied systematically. New experimental results regarding ion dynamics in the liquid and direct demonstration of ion feedback from the gas to the liquid are discussed in this paper. In addition, a novel technique to measure the drift velocity of argon ions is introduced along with preliminary results obtained in gas.
Style APA, Harvard, Vancouver, ISO itp.
2

McLean, A. D., B. Liu i J. A. Barker. "Abinitiocalculation of argon–argon potential". Journal of Chemical Physics 89, nr 10 (15.11.1988): 6339–47. http://dx.doi.org/10.1063/1.455400.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Raeymaekers, B., J. A. C. Broekaert i F. Leis. "Radially resolved rotational temperatures in nitrogen-argon, oxygen-argon, air-argon and argon ICPs". Spectrochimica Acta Part B: Atomic Spectroscopy 43, nr 8 (styczeń 1988): 941–49. http://dx.doi.org/10.1016/0584-8547(88)80199-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Campos-Pires, Rita, Christopher J. Edge i Robert Dickinson. "Argon". Critical Care Medicine 44, nr 7 (lipiec 2016): 1456–57. http://dx.doi.org/10.1097/ccm.0000000000001680.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Coburn, Mark, Robert D. Sanders, Daqing Ma, Michael Fries, Steffen Rex, Guy Magalon i Rolf Rossaint. "Argon". European Journal of Anaesthesiology 29, nr 12 (grudzień 2012): 549–51. http://dx.doi.org/10.1097/eja.0b013e328357bfdd.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Mendelson, Brian J., Jeffrey M. Feldman i Rocco A. Addante. "Argon embolus from argon beam coagulator". Journal of Clinical Anesthesia 42 (listopad 2017): 86–87. http://dx.doi.org/10.1016/j.jclinane.2017.08.021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Murphy, A. B., i C. J. Arundelli. "Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasmas". Plasma Chemistry and Plasma Processing 14, nr 4 (grudzień 1994): 451–90. http://dx.doi.org/10.1007/bf01570207.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hoskinson, Alan R., José Gregorío, Jeffrey Hopwood, Kristin Galbally-Kinney, Steven J. Davis i Wilson T. Rawlins. "Argon metastable production in argon-helium microplasmas". Journal of Applied Physics 119, nr 23 (21.06.2016): 233301. http://dx.doi.org/10.1063/1.4954077.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Sanders, Robert D., Daqing Ma i Mervyn Maze. "Argon neuroprotection". Critical Care 14, nr 1 (2010): 117. http://dx.doi.org/10.1186/cc8847.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Baidakov, Vladimir G., Aleksey M. Kaverin i Valentina N. Andbaeva. "Attainable Superheat of Argon−Helium, Argon−Neon Solutions". Journal of Physical Chemistry B 112, nr 41 (16.10.2008): 12973–75. http://dx.doi.org/10.1021/jp806048e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Argon"

1

Weirich, John R. "Improvements to Argon-Argon Dating of Extraterrestrial Materials". Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/145293.

Pełny tekst źródła
Streszczenie:
The source of potassium and argon in ordinary chondrites is determined by comparing the argon activation energies of feldspar, pyroxene, and olivine with that of the L chondrites Chico and North West Africa (NWA) 091. In addition, shock pressures of 29 to 55.8 GPa are shown to lower the activation energy of feldspar. Comparable shock pressures lowers the activation energy of pyroxene outside of error, but the variability of this value, even among unshocked samples, makes a clear distinction difficult. The effect of shock on olivine has not been investigated, by myself or others. Like many ordinary chondrites, Chico and NWA 091 have two major releases of argon, one at low temperature, and the other at high temperature. The low temperature release of Chico contains two releases, which match the activation energies of shocked and unshocked feldspar. The low temperature release of NWA 091 only contains a single release, which matches shocked feldspar. The high temperature release of both Chico and NWA 091 has an activation energy that is similar to pyroxene, but not olivine. A potassium mass balance of Chico shows that all the potassium in the meteorite is contained in feldspar, and Raman spectroscopy shows this feldspar has not been converted into a high pressure phase, indicating the high temperature release is inclusions in a high temperature mineral. This mineral is probably pyroxene based upon the activation energy, though thin sections provide evidence that feldspar is more closely associated with olivine. NWA 091 exhibits multiple isochrons, showing the presence of two nonprimordial and (probably) non-terrestrial trapped components of argon. The removal of these trapped components reveals a thermal event produced by a collisional impact on the L chondrite parent body at 475 ± 6 Ma (which supports a link between L chondrites and Ordovician fossil meteorites), as well as a similar event at ~800 Ma (which, combined with similar ages on other Solar System objects, suggests an increased impact flux at that time). Chico did not exhibit an isochron, and the age data for Chico is not reported.
Style APA, Harvard, Vancouver, ISO itp.
2

Harwardt, Heike. "Behandlung von PP- und PET-Substraten im Argon- und Methan/Argon-Plasma". [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=983031045.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Edmunds, P. D. "Trapping ultracold argon atoms". Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1462806/.

Pełny tekst źródła
Streszczenie:
This thesis describes the dipole trapping of both metastable and ground state argon atoms. Metastable argon atoms are first Doppler-cooled down to ∼80 μK in a magneto- optical trap (MOT) on the 4s[3/2]2 to 4p[5/2]3 transitions. These were loaded into dipole traps formed both within the focus of a high-power CO2 laser beam and within an optical build-up cavity. The optical cavity’s well depth could be rapidly modulated: allowing efficient loading of the trap, characterisation of trapped atom temperature, and reduction of intensity noise. Collisional properties of the trapped metastable atoms were studied within the cavity and the Penning and associative losses from the trap calculated. Ground state noble gas atoms were also trapped for the first time. This was achieved by optically quenching metastable atoms to the ground state and then trapping the atoms in the cavity field. Although the ground state atoms could not be directly probed, we detected them by observing the additional collisional loss from co-trapped metastable argon atoms. This trap loss was used to determine an ultra-cold elastic cross section between the ground and metastable states. Using a type of parametric loss spectroscopy we also determined the polarisability of metastable argon at the trapping wavelength of 1064 nm.
Style APA, Harvard, Vancouver, ISO itp.
4

Grigonis, A., L. Marcinauskas, M. Carnauskas i R. Kaliasas. "Graphite Nanostructures Produce in the Acetylene, Argon-Acetylene and Argon-Hydrogen-Acetylene Plasmas". Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/35388.

Pełny tekst źródła
Streszczenie:
The amorphous carbon films were deposited on silicon-metal substrates by plasma jet chemical vapor deposition (PJCVD) and plasma enchanted CVD (PECVD). PJCVD carbon coatings have been prepared at atmospheric pressure in Ar/ C2H2 and Ar/H2/C2H2 mixtures. The films prepared in Ar/C2H2 plasma are attributed to graphite-like carbon films. Addition of the hydrogen decreases growth rate and the surface roughness of the coatings, but coatings have low fraction of oxygen (~5 at.%) The formation of the nanocrystalline graphite was obtained in Ar/H2/C2H2 plasma. The carbon nanotubes were synthesed by PECVD using Au/Cr catalyst particles at low (≤ 450 C; p = 40 Pa ) temperature in pure acetylene. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35388
Style APA, Harvard, Vancouver, ISO itp.
5

Velazquez, Maria Guadalupe Neira. "Argon plasma treatment of polymers". Thesis, University of Sheffield, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.274978.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Chetty, Dashavir. "Strong-field excitation of argon". Thesis, Griffith University, 2021. http://hdl.handle.net/10072/402734.

Pełny tekst źródła
Streszczenie:
The advancement in laser technology in the past few decades have enabled consistent generation of pulses in the femtosecond (fs, x10^-15 s) timescale. The strong electric fields produced by such pulses are comparable to those experienced by bound electrons within atoms and molecules, leading to highly non-linear interactions. One of the most probable such interaction is that of strong-field excitation where the target is left in an excited state. These excited states have been shown to influence other strong-field phenomena and exhibit unique properties that are useful for further applications such as, generation of coherent extreme-ultraviolet radiation, and lasercooling of noble gases. Therefore, a comprehensive understanding of the fundamental excitation process and how excitation rates are affected is necessary in order to tailor conditions for a desired outcome. So far, there have been only a few experimental studies on excitation yields due to the unique experimental arrangements required for observation of these states. In contrast, there have been more theoretical studies which have yet to be experimentally confirmed. The aforementioned experiments have been undertaken with laser pulses with a duration of 30 fs or more centred at a wavelength of 800 nm which contain many optical cycles. But, numerical calculations predict that excitation yields scale differently as the pulse duration reduces such that it contains only a few optical cycles. This has yet to be experimentally confirmed since there has not been any experimental studies on excitation yields from few-cycle pulses. Furthermore, the use of few-cycle pulses enables precise control over the electric field experienced by the atom which may influence the excitation process. In this dissertation, we experimentally investigate excitation yields of argon interacting with multi- and few-cycle pulses centred at 800 nm and compare them to solutions of the time-dependent Schrodinger equation (TDSE). The first investigation explores the effect of changing the intensity spanning between 50-300 TW/cm2. By directly detecting excited states surviving the flight time to the particle detector, we show that excitation rates exhibit a step-wise increase within the intensity range which correspond to the absorption of 13 and 14 photons with linearly polarized multi-cycle pulses. These were predicted theoretically but were thought to be washed out due to volume-averaging inevitable in the experiment. Analysis of the numerical predictions reveal that these enhancements are mainly due to excitation into low-lying states, specifically the 5g and 6h states for 13- and 14-photon absorption, respectively. These increases are not observed with few-cycle pulses where the offset between the peak of the pulse envelope and the peak of the central electric field cycle, known as the carrier-envelope phase (CEP), was not locked. This is in excellent agreement with TDSE predictions. Population of low-lying states are largely preferred with few-cycle pulses and these enhancements are less pronounced, to the point where they do not persist after volume-averaging. The second investigation explores excitation with elliptically polarized laser fields of varying ellipticities at select intensities with both multi- and few-cycle pulses. In all cases, excitation rates decrease quicker with increasing ellipticity than that of Ar+ but slower than predicted with the strong-field approximation as well as Ar2+. This indicates a different mechanism than the tunneling-plus-rescattering model proposed for the formation of Ar2+ through non-sequential double ionization. No anomalous peaks at non-zero ellipticity are observed in the experiment for 30 fs and 6 fs pulses at an intensity of 270 TW/cm2 and 200 TW/cm2, respectively, nor were they predicted by TDSE results. At a lower intensity, where previously published results from semi-classical modeling predict anomalous distributions, no obvious deviations from a normal distribution is observed. However, low statistics at this intensity limits any confident conclusions for a peak at very small, non-zero ellipticity values. Lastly, analysis of TDSE results reveals an anomalous distribution for excitation out of the pm= +-1 initial ground state orbitals. Further experiments are required for solid conclusions as well as good agreement between TDSE results and experiments. The last investigation explores the role of the CEP of a few-cycle pulse. For the first time, we show that excitation rates are highly dependent on both the peak intensity and CEP of the pulse. At a single intensity, TDSE calculations predict up to a 55% variation in excitation rates. Furthermore, the CEP dependent trends can vary significantly with small changes in the intensity, leading to a significant variation in the optimum CEP for maximum excitation yields. In the experiment, volume averaging reduces the maximum observable variation in the CEP dependent yields to 7%. Furthermore, they are still highly dependent on the exact in situ peak intensity of the experimental pulse with many peak intensities resulting in a variation below 5%. This places tight restrictions on conditions which allow successful observation of the variation in yields with varying CEP. Despite the inability to precisely determine the in situ experimental intensity, the agreement with the numerical predictions is very good which serves to validate the theoretical predictions. The results from these studies reveal that the population of excited states are dependent on the intensity, polarization, and, in the case of few-cycle pulses, the CEP. If the intensity can be precisely controlled, selective excitation to the 5g and 6h states can be achieved with up to a 60% likelihood with the use of multi-cycle pulses. This is reduced with volume-averaging but these states still remain the most populated states. Knowing this, excitation to the metastable state can be increased through direct stimulation via additional radiation. Further studies to determine the precise efficiency of the process is required in order to evaluate it as a suitable replacement for current metastable generation techniques.
Thesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Style APA, Harvard, Vancouver, ISO itp.
7

Al-Dabbagh, Abdula Nazar. "Charge Mobility in Liquid Argon". Thesis, The University of Arizona, 2014. http://hdl.handle.net/10150/318805.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Harrington, Kathleen M. "Simulated liquid argon interactions with neutrons". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/78513.

Pełny tekst źródła
Streszczenie:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Physics, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 77-78).
The GEANT4 physics simulation program is known to have errors in how hadronic interactions are implemented. This has the potential to cause errors in the Monte Carlos used to determine the expected neutron backgrounds in the MiniCLEAN single phase liquid argon WIMP detector. Elastic and inelastic collisions between neutrons and argon nuclei as well as neutron captures were simulated independently in order to characterize the accuracy of the implementation by GEANT4.9.3.pOl and GEANT4.9.5. The effective cross sections, angular distributions, photons, decay schemes, energy conservation, and momentum conservation were determined through analysis of the neutron tracks created by GEANT4. A large proportion of the interactions behave as expected, however energy and momentum are not conserved by varying degrees of severity with some GEANT4.9.3.pOl inelastic collisions resulting in over twice the correct amount of energy.
by Kathleen M. Harrington.
S.B.
Style APA, Harvard, Vancouver, ISO itp.
9

Taillandier-Loize, Thierry. "Jet lent d’atomes d’argon métastables pour l’étude de l’échange de métastabilité, des interactions de van der Waals et des milieux d’indice négatif". Thesis, Paris 13, 2014. http://www.theses.fr/2014PA132039/document.

Pełny tekst źródła
Streszczenie:
La thématique abordée dans cette thèse relève de la manipulation d’un jet d’atomes d’argon métastables (Ar* ³P2) dans différentes configurations. Premièrement, je présente l’échange de métastabilité entre un atome au fondamental et un atome excité à de faibles énergies de centre de masse (entre 4 et 9 meV). Je propose également l’interprétation théorique par une approche semi-classique (approximation JWKB) qui se révèle validée, dans ce domaine d’énergies, en comparaison avec la résolution exacte de l’équation de Schrödinger radiale mettant en jeu les potentiels concernés par la collision. Les sections efficaces absolues d’échanges, déduites d’une analyse en temps de vol du signal métastable, permettent de réaliser une comparaison sans biais avec les prédictions théoriques. Les caractéristiques d’un jet ralenti par effet Zeeman sont dégradées par le processus de ralentissement et le rende difficilement utilisable en deçà de quelques dizaines de mètres par seconde. C’est pourquoi, dans un deuxième temps, je présente la réalisation d’un jet lent original, issu d’un piège magnéto-optique et présentant des caractéristiques remarquables. La vitesse est accordable entre 10 et 100 m/s, la dispersion de vitesse relative est très faible (6 % à 20 m/s) et le flux est conséquent (10⁹ Ar*/s/sr), pour une ouverture angulaire standard (35 mrad FWHM). Ce nouveau dispositif permet de présenter certaines questions d’interférométrie et d’optique atomique telles que les interactions atome-surface de type van der Waals et l’étude de potentiels comobiles ainsi que leurs applications dans la réalisation de milieux d’indice négatif ou de ralentisseurs
The topic of this thesis concerns the manipulation of a metastable argon (Ar* ³p2) atomic beam in different configurations. Firstly, I present the metastability exchange between an atom in fundamental state and an excited atom at low center of mass energy (between 4 and 9 meV). I also propose theoretical interpretation by a semi-classical approach (JWKB approximation) which is validated, in this field of energies, compared to the exact solution of the Schrödinger radial equation with potentials involved in collision. The absolute exchange cross-sections, derived from a time of flight analysis of metastable signal, enable an unbiased comparison with theoretical predictions. The characteristics of a Zeeman slowedbeam are degraded by the process of slowing down and makes it difficult to use below a few tens of meters per second. Secondly, I present the realization of an original slow beam from a magneto-optical trap and having outstanding features. The atomic velocity is tunable between 10 and 100 m/s, the relative velocity dispersion is very low (6 % at 20 m/s) and the flow is substantial, (4.7×108 Ar*/s/sr), for a standard angular aperture (35 mrad FWHM). This new device can present some issues in atomic interferometry and atomic optics such as van der Waals atom-surface interactions or study co-moving potentials and their applications in negative-index media for matter wave or slowers
Style APA, Harvard, Vancouver, ISO itp.
10

Fladerer, Alexander. "Keimbildung und Tröpfchenwachstum in übersättigtem Argon-Dampf Konstruktion einer kryogenen Nukleationspulskammer /". [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=965487814.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Argon"

1

Lew, Kristi. Argon. New York, NY: Rosen Pub., 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Krueger, Jim. The Argon deception. Grand Rapids, Mich: Zondervan, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Krueger, Jim. The Argon deception. Grand Rapids, Mich: Zondervan, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Paul J. J. Van Kampen. The outer shell spectra of argon and argon-like ions. Dublin: University College Dublin, 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

1946-, Wintsch Robert Peter, i Geological Survey (U.S.), red. p40sAr/p39sAr age-spectrum data for whole rock samples of the Martinsburg Formation, Lehigh Gap area, Pennsylvania. [Reston, Va.]: U.S. Dept. of the Interior, Geological Survey, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

1946-, Wintsch Robert Peter, i Geological Survey (U.S.), red. ⁴⁰Ar/³⁹Ar age-spectrum data for whole rock samples of the Martinsburg Formation, Lehigh Gap area, Pennsylvania. [Reston, Va.]: U.S. Dept. of the Interior, Geological Survey, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

1946-, Wintsch Robert Peter, i Geological Survey (U.S.), red. p40sAr/p39sAr age-spectrum data for whole rock samples of the Martinsburg Formation, Lehigh Gap area, Pennsylvania. [Reston, Va.]: U.S. Dept. of the Interior, Geological Survey, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

1946-, Wintsch Robert Peter, i Geological Survey (U.S.), red. ⁴⁰Ar/³⁹Ar age-spectrum data for whole rock samples of the Martinsburg Formation, Lehigh Gap area, Pennsylvania. [Reston, Va.]: U.S. Dept. of the Interior, Geological Survey, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Mock, Claire. Thermochronologie ⁴⁰Ar/³⁹Ar et mecanismes lithospheriques: Approche methodologique et appliquee, exemples de la Chaine du Kunlun et de la jonction triple de l'Afar. Paris: Université Blaise Pascal, U.F.R. de recherche scientifique et technique, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

1946-, Wintsch Robert Peter, i Geological Survey (U.S.), red. p40sAr/p39sAr age-spectrum data for whole rock samples of the Martinsburg Formation, Lehigh Gap area, Pennsylvania. [Reston, Va.]: U.S. Dept. of the Interior, Geological Survey, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Argon"

1

Walter, Robert C. "Potassium-Argon/Argon-Argon Dating Methods". W Chronometric Dating in Archaeology, 97–126. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9694-0_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Cosca, Michael A. "Potassium–Argon (Argon–Argon), Structural Fabrics". W Encyclopedia of Scientific Dating Methods, 642–47. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6304-3_124.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Cosca, Michael A. "Potassium-Argon (Argon-Argon), Structural Fabrics". W Encyclopedia of Scientific Dating Methods, 1–8. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6326-5_124-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Attendorn, H. G., i R. N. C. Bowen. "Potassium-argon and argon-argon dating". W Radioactive and Stable Isotope Geology, 192–243. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5840-4_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kendrick, Mark A. "Argon". W Encyclopedia of Earth Sciences Series, 1–3. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39193-9_208-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Kendrick, Mark A. "Argon". W Encyclopedia of Earth Sciences Series, 1–3. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39193-9_208-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kendrick, Mark A. "Argon". W Encyclopedia of Earth Sciences Series, 1–4. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39193-9_208-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kendrick, Mark A. "Argon". W Encyclopedia of Earth Sciences Series, 53–55. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_208.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

W. Leachman, Jacob, Richard T Jacobsen, Eric W. Lemmon i Steven G. Penoncello. "Argon". W Thermodynamic Properties of Cryogenic Fluids, 157–69. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57835-4_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Bowen, Robert. "Potassium-Argon and Argon-40/Argon-39 Dating". W Isotopes in the Earth Sciences, 201–46. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-009-2611-0_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Argon"

1

Wenzel, Hans, Krzysztof Genser, Sun Jun i Alexei Strelchenko. "G4Opticks for liquid Argon TPC's". W G4Opticks for liquid Argon TPC's. US DOE, 2020. http://dx.doi.org/10.2172/1668380.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Xing, Zhenzhong. "Gas Argon Time Projection Chamber Optimization". W Gas Argon Time Projection Chamber Optimization. US DOE, 2021. http://dx.doi.org/10.2172/1827116.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Bridges, William B. "Argon-ion lasers". W Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 1985. http://dx.doi.org/10.1364/cleo.1985.wu4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Babin, Sergey V., S. V. Khorev, Andrey E. Kuklin i T. Y. Yeremenko. "Waveguide argon laser". W Ninth International Symposium on Gas Flow and Chemical Lasers, redaktorzy Costas Fotakis, Costas Kalpouzos i Theodore G. Papazoglou. SPIE, 1993. http://dx.doi.org/10.1117/12.144600.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Zhang, G. X., S. M. Wang, Q. Zhang i L. Liu. "The emission spectra diagnosis in microwave argon and argon-air plasmas". W 2009 IEEE 36th International Conference on Plasma Science (ICOPS). IEEE, 2009. http://dx.doi.org/10.1109/plasma.2009.5227562.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Medcraft, Chris, Nick Walker, John Mullaney, Graham Cooper i Dror Bittner. "BROADBAND FTMW SPECTROSCOPY OF THE UREA-ARGON AND THIOUREA-ARGON COMPLEXES". W 72nd International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2017. http://dx.doi.org/10.15278/isms.2017.rh11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Neves, P. N. B., C. A. N. Conde i L. M. N. Tavora. "Experimental Measurement of the Mobilities of Argon Ions in Gaseous Argon". W 2006 IEEE Nuclear Science Symposium Conference Record. IEEE, 2006. http://dx.doi.org/10.1109/nssmic.2006.355946.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Michalski, Wojciech, Lucyna Pospiech i Malgorzata Jankowska-Kuc. "Argon laser for otosclerosis". W Laser Technology: Fourth Symposium, redaktorzy Wieslaw L. Wolinski i Tadeusz Kecik. SPIE, 1995. http://dx.doi.org/10.1117/12.203339.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Cameron, Bruce D., Karen M. Joos i Jin-Hui Shen. "Argon endolaser suture lysis". W Photonics West '96, redaktorzy Jean-Marie A. Parel, Karen M. Joos i Pascal O. Rol. SPIE, 1996. http://dx.doi.org/10.1117/12.240047.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Lawrence-Sanderson, Benjamin, Carlos Escobar i Adam Para. "Metalenses as Light Concentrators for Liquid Argon Detectors". W Metalenses as Light Concentrators for Liquid Argon Detectors. US DOE, 2021. http://dx.doi.org/10.2172/1826152.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Argon"

1

Jaques, A. Thermophysical properties of argon. Office of Scientific and Technical Information (OSTI), luty 1988. http://dx.doi.org/10.2172/5025437.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Wang, H., P. Glans i O. Hemmers. Autoionization study of the Argon 2p satellites excited near the argon 2s threshold. Office of Scientific and Technical Information (OSTI), kwiecień 1997. http://dx.doi.org/10.2172/603557.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Trbojevic, D., i N. Pastore. Argon and argon-oxygen glow discharge cleaning of the Main Ring beam pipe. Office of Scientific and Technical Information (OSTI), luty 1989. http://dx.doi.org/10.2172/6080884.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Alexander, Thomas, Raymond Bunker, Emily Mace, Kimbrelle Thommasson, Christine Johnson i Justin Lowrey. UNESE Argon-39 Measurement Techniques: Developing an above-ground Argon-39 Measurement Capability. Office of Scientific and Technical Information (OSTI), styczeń 2021. http://dx.doi.org/10.2172/1983358.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kilmer, J. Argon spill test for E706. Office of Scientific and Technical Information (OSTI), marzec 1988. http://dx.doi.org/10.2172/7199427.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Alarcon, Ricardo, Septimiu Balascuta, Drew Alton, Elena Aprile, Karl-Ludwig Giboni, Tom Haruyama, Rafael Lang i in. Multi-Ton Argon and Xenon. Office of Scientific and Technical Information (OSTI), styczeń 2009. http://dx.doi.org/10.2172/993871.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Bauer, R., W. Windl, L. Collins, J. Kress i I. Kwon. Electrical conductivity of compressed argon. Office of Scientific and Technical Information (OSTI), październik 1997. http://dx.doi.org/10.2172/642761.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Alsmiller, R. G. Jr, C. Y. Fu, T. A. Gabriel, T. Handler, L. Cremaldi i J. Reidy. The liquid argon calorimeter subsystem. Office of Scientific and Technical Information (OSTI), styczeń 1991. http://dx.doi.org/10.2172/6294454.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Swanson, Alaina M., i Carlos O. Escobar. Xenon Doping of Liquid Argon. Office of Scientific and Technical Information (OSTI), lipiec 2019. http://dx.doi.org/10.2172/1614729.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Duffy, Kirsty. Neutrino Interaction Measurements on Argon. Office of Scientific and Technical Information (OSTI), czerwiec 2020. http://dx.doi.org/10.2172/1637604.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii