Gotowa bibliografia na temat „Arbitrary bodies”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Arbitrary bodies”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Arbitrary bodies"
Cetto, A. M., i L. de la Peña. "Casimir effect for bodies of arbitrary size". Il Nuovo Cimento B 108, nr 4 (kwiecień 1993): 447–58. http://dx.doi.org/10.1007/bf02828725.
Pełny tekst źródłaLachand-Robert†, Thomas, i Édouard Oudet. "Bodies of constant width in arbitrary dimension". Mathematische Nachrichten 280, nr 7 (maj 2007): 740–50. http://dx.doi.org/10.1002/mana.200510512.
Pełny tekst źródłaDavidovich, M. V. "Dispersion Interaction between Bodies of an Arbitrary Shape". Journal of Communications Technology and Electronics 67, nr 10 (październik 2022): 1207–15. http://dx.doi.org/10.1134/s1064226922100011.
Pełny tekst źródłaTricarico, Pasquale. "Global gravity inversion of bodies with arbitrary shape". Geophysical Journal International 195, nr 1 (3.08.2013): 260–75. http://dx.doi.org/10.1093/gji/ggt268.
Pełny tekst źródłaSun, Xiuquan, Teng Lin i J. Daniel Gezelter. "Langevin dynamics for rigid bodies of arbitrary shape". Journal of Chemical Physics 128, nr 23 (21.06.2008): 234107. http://dx.doi.org/10.1063/1.2936991.
Pełny tekst źródłaTran Van Nhieu, Michel, i Frédérique Ywanne. "Sound scattering by slender bodies of arbitrary shape". Journal of the Acoustical Society of America 95, nr 4 (kwiecień 1994): 1726–33. http://dx.doi.org/10.1121/1.408691.
Pełny tekst źródłaRadha, R., i B. Sri Padmavati. "Stokes Flow Past Porous Bodies of Arbitrary Shape". Indian Journal of Pure and Applied Mathematics 51, nr 3 (wrzesień 2020): 1247–63. http://dx.doi.org/10.1007/s13226-020-0462-0.
Pełny tekst źródłaSchnell, Uwe. "Lattice inequalities for convex bodies and arbitrary lattices". Monatshefte f�r Mathematik 116, nr 3-4 (wrzesień 1993): 331–37. http://dx.doi.org/10.1007/bf01301537.
Pełny tekst źródłaIvanov, Ts, i R. Savova. "Stability of elastic bodies under an arbitrary load". International Applied Mechanics 29, nr 8 (sierpień 1993): 610–13. http://dx.doi.org/10.1007/bf00847010.
Pełny tekst źródłaMa, Chien-Ching, i I.-Kuang Shen. "Boundary Weight Functions for Cracks in Three-Dimensional Finite Bodies". Journal of Mechanics 15, nr 1 (marzec 1999): 17–26. http://dx.doi.org/10.1017/s1727719100000289.
Pełny tekst źródłaRozprawy doktorskie na temat "Arbitrary bodies"
NOBREGA, ALEXANDRE REGIS. "SEATTERING OF PLANE WAVES BY PERFECT-CONDUCTING TRIDIMENSIONAL BODIES WITH ARBITRARY SHAPES". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1992. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8822@1.
Pełny tekst źródłaO presente trabalho estuda a interação entre objetos condutores perfeitos tridimensionais, de formas arbitrárias e campos eletromagnéticos harmônicos no tempo incidentes sobre os mesmos. Pretende-se determinar os campos espalhados pelos objetos, caracterizados por uma malha de elementos de contorno planos e triangulares. Através de um tratamento numérico aproximado da Equação Integral do Campo Magnético, a densidade de corrente induzida na superfície do condutor perfeito é obtida. De posse deste resultado, determina-se o campo magnético espalhado (campo distante) e calcula-se a seção reta radar em várias direções. As vantagens e desvantagens da utilização do Método dos Momentos serão apontadas. Os resultados obtidos pelos mesmos serão comparados entre si e com aqueles disponíveis na literatura.
This work studies the interaction between tridimensional perfect conducting objects of arbitrary shapes and incident time-harmonic electromagnetic fields. The fields, scattered by these objects, are determined using a finite number of plane and triangular boundary elements. The induced current density on the boundary is obtained using the Magnetic Field Integral Equation, applied approximately in a numerical approach. With the result mentioned above, the scattered magnetic field (far-field) is determined and the Radar Cross Section is calculated. The advantages and disadvantages of the use of a numerical method (moment method) are pointed out and the results compared. With those in literature.
Tekasakul, Perapong. "Rotatory oscillation of arbitrary axisymmetric bodies in a viscous fluid : numerical solutions /". free to MU campus, to others for purchase, 1996. http://wwwlib.umi.com/cr/mo/fullcit?p9823331.
Pełny tekst źródłaGonc, L. Oktay. "Computation Of External Flow Around Rotating Bodies". Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12605985/index.pdf.
Pełny tekst źródłas upwind flux differencing scheme for spatial and Runge-Kutta explicit multistage time stepping scheme for temporal discretization on unstructured meshes is developed for the unsteady solution of external viscous flow around rotating bodies. The main aim of this study is to evaluate the aerodynamic dynamic stability derivative coefficients for rotating missile configurations. Arbitrary Lagrangian Eulerian (ALE) formulation is adapted to the solver for the simulation of the rotation of the body. Eigenvalues of the Euler equations in ALE form has been derived. Body rotation is simply performed by rotating the entire computational domain including the body of the projectile by means of rotation matrices. Spalart-Allmaras one-euqation turbulence model is implemented to the solver. The solver developed is first verified in 3-D for inviscid flow over two missile configurations. Then inviscid flow over a rotating missile is tested. Viscous flux computation algorithms and Spalarat-Allmaras turbulence model implementation are validated in 2-D by performing calculations for viscous flow over flat plate, NACA0012 airfoil and NLR 7301 airfoil with trailing edge flap. The ALE formulation is validated in 2-D on a rapidly pitching NACA0012 airfoil. Afterwards three-dimensional validation studies for viscous, laminar and turbulent flow calculations are performed on 3-D flat plate problem. At last, as a validation test case, unsteady laminar and turbulent viscous flow calculations over a spinning M910 projectile configuration are performed. Results are qualitatively in agreement with the analytical solutions, experimental measurements and previous studies for steady and unsteady flow calculations.
Housley, Paul. "Semi-empirical prediction of the normal aerodynamic loads on axisymmetric bodies of arbitrary profile in non-uniform flowfields". Thesis, University of Bristol, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432733.
Pełny tekst źródłaAndrew, Victoria. "Efficient numerical evaluation of the scattering of acoustic waves by arrays of cylinders and bodies of revolution of arbitrary cross section". Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/efficient-numerical-evaluation-of-the-scattering-of-acoustic-waves-by-arrays-of-cylinders-and-bodies-of-revolution-of-arbitrary-cross-section(636d62f5-e93f-4ba9-b25f-e4816336b2d0).html.
Pełny tekst źródłaHashim, Sithy Aysha Fazlie. "Heat transfer between two arbitrary shaped bodies in the jump regime with one body enclosed inside the other : a numerical study /". free to MU campus, to others for purchase, 1999. http://wwwlib.umi.com/cr/mo/fullcit?p9953863.
Pełny tekst źródłaBürger, Markus [Verfasser]. "An Immersed Boundary Method for Arbitrarily Shaped Lagrangian Bodies / Markus Bürger". Düren : Shaker, 2021. http://d-nb.info/1225654211/34.
Pełny tekst źródłaPai, Ravindra. "Calculation of wave resistance and elevation of arbitrarily shaped bodies using the boundary integral element method". Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-10222009-125057/.
Pełny tekst źródłaMitchell, Jason W. "A Simplified Variation of Parameters Solution for the Motion of an Arbitrarily Torqued Mass Asymmetric Rigid Body". University of Cincinnati / OhioLINK, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=ucin962392147.
Pełny tekst źródłaMackenzie, Anne I. Rao S. M. "Paired pulse basis functions and triangular patch modeling for the method of moments calculation of electromagnetic scattering from three-dimensional, arbitrarily-shaped bodies". Auburn, Ala., 2008. http://hdl.handle.net/10415/1447.
Pełny tekst źródłaKsiążki na temat "Arbitrary bodies"
Konyukhov, Alexander. Computational Contact Mechanics: Geometrically Exact Theory for Arbitrary Shaped Bodies. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., red. Calculation of water drop trajectories to and about arbitrary three-dimensional bodies lifting and nonlifting bodies in potential airflow. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1985.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Branch, red. Calculation of water drop trajectories to and about arbitrary three-dimensional bodies lifting and nonlifting bodies in potential airflow. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1985.
Znajdź pełny tekst źródłaAbdulhussain, T. H. The solution of the exterior Neumann problem for arbitrary shaped bodies with particular application to ellipsoids. Salford: University of Salford, 1992.
Znajdź pełny tekst źródła(Organization), Human Rights Watch. Arbitrary killings by security forces: Submission to the investigative bodies on the November 28-29, 2008 violence in Jos, Plateau State, Nigeria. New York, NY: Human Rights Watch, 2009.
Znajdź pełny tekst źródłaCenter, Langley Research, red. An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1992.
Znajdź pełny tekst źródłaWave Scattering By Small Bodies Of Arbitrary Shapes. World Scientific Publishing Company, 2005.
Znajdź pełny tekst źródłaKonyukhov, Alexander, i Karl Schweizerhof. Computational Contact Mechanics: Geometrically Exact Theory for Arbitrary Shaped Bodies. Springer, 2012.
Znajdź pełny tekst źródłaKonyukhov, Alexander, i Karl Schweizerhof. Computational Contact Mechanics: Geometrically Exact Theory for Arbitrary Shaped Bodies. Springer, 2012.
Znajdź pełny tekst źródłaKonyukhov, Alexander, i Karl Schweizerhof. Computational Contact Mechanics: Geometrically Exact Theory for Arbitrary Shaped Bodies. Springer, 2014.
Znajdź pełny tekst źródłaCzęści książek na temat "Arbitrary bodies"
Huh, K. S., S. E. Widnall i R. K. Agarwal. "Scattering of Sound by Rigid Bodies in Arbitrary Flows". W ICASE/NASA LaRC Series, 433–55. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-8342-0_26.
Pełny tekst źródłaLagrange, J. L. "The Very Small Oscillations of an Arbitrary System of Bodies". W Analytical Mechanics, 253–305. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8903-1_14.
Pełny tekst źródłaKioka, W. "Nonlinear Diffraction Loads upon Three-dimensional Bodies of Arbitrary Shape". W Nonlinear Water Waves, 239–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83331-1_27.
Pełny tekst źródłaLagrange, J. L. "The Motion of Constrained Bodies Which Interact in an Arbitrary Fashion". W Analytical Mechanics, 442–67. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8903-1_16.
Pełny tekst źródłaYavorsky, N. I. "Laminar and Turbulent Wakes of Bodies of Arbitrary Shape in Uniform Flow". W Bluff-Body Wakes, Dynamics and Instabilities, 301–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-00414-2_66.
Pełny tekst źródłaSansaturio, M. E., I. Vigo-Aguiar i J. M. Ferrándiz. "Non—Integrability of the Motion of a Point Mass around a Planet of Arbitrary Shape". W The Dynamics of Small Bodies in the Solar System, 295–302. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9221-5_28.
Pełny tekst źródłaFarias, Vera S. O., Wilton P. Silva, Cleide M. D. P. S. Silva, J. M. P. Q. Delgado, Severino R. Farias Neto i A. G. Barbosa de Lima. "Transient Diffusion in Arbitrary Shape Porous Bodies: Numerical Analysis Using Boundary-Fitted Coordinates". W Advanced Structured Materials, 85–119. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30532-0_4.
Pełny tekst źródłaPatel, Jitendra Kumar, i Ganesh Natarajan. "Volume-of-Solid Immersed Boundary Method for Free Surface Flows with Arbitrary Moving Rigid Bodies". W Fluid Mechanics and Fluid Power – Contemporary Research, 1181–92. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2743-4_112.
Pełny tekst źródłaGol’nik, Edward, i Ivan Radchenko. "Numerical Methods of Statics and Dynamics of Contact Systems with Arbitrary Number of 3D Elastic Bodies". W Contact Mechanics, 271–74. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1983-6_37.
Pełny tekst źródłaLagrange, J. L. "A General Formula of Dynamics for the Motion of a System of Bodies Moved by Arbitrary Forces". W Analytical Mechanics, 184–90. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8903-1_10.
Pełny tekst źródłaStreszczenia konferencji na temat "Arbitrary bodies"
Xu, Yu-Lin. "Radiative interaction with arbitrary material bodies". W Frontiers in Optics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/fio.2018.jw3a.57.
Pełny tekst źródłaJENN, A., i J. WILLIAMS. "Preliminary aerodynamic design of arbitrary cambered missile bodies". W 27th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-528.
Pełny tekst źródłaDREW, B., i A. JENN. "Pressure drag calculations on axisymmetric bodies of arbitrary moldline". W 28th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-280.
Pełny tekst źródłaWang, Xiaomu, i R. O. Hansen. "Inversion for magnetic anomalies of arbitrary three‐dimensional bodies". W SEG Technical Program Expanded Abstracts 1988. Society of Exploration Geophysicists, 1988. http://dx.doi.org/10.1190/1.1892384.
Pełny tekst źródłaAhuja, Vivek, i Roy Hartfield. "Application of the Distributed Singularities Concept to Arbitrary Aerodynamic Bodies". W 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-1072.
Pełny tekst źródłaYovanovich, M., P. Teertstra i J. Culham. "Modeling transient conduction from isothermal convex bodies of arbitrary shape". W 6th Joint Thermophysics and Heat Transfer Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-1976.
Pełny tekst źródłaChen, Q., i D. R. Wilton. "Electromagnetic scattering by three-dimensional arbitrary complex material/conducting bodies". W International Symposium on Antennas and Propagation Society, Merging Technologies for the 90's. IEEE, 1990. http://dx.doi.org/10.1109/aps.1990.115179.
Pełny tekst źródłaDeWald, Adrian T., i Michael R. Hill. "Model for Predicting Laser Peening Residual Stresses in Arbitrary 3D Bodies". W ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71795.
Pełny tekst źródłaLian, Yongsheng, i William Henshaw. "A Framework for Interactions of Fluids and Rigid Bodies with Arbitrary Motions". W 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-710.
Pełny tekst źródłaNunes, Urbano Miguel, i Yiannis Demiris. "Online Unsupervised Learning of the 3D Kinematic Structure of Arbitrary Rigid Bodies". W 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2019. http://dx.doi.org/10.1109/iccv.2019.00391.
Pełny tekst źródłaRaporty organizacyjne na temat "Arbitrary bodies"
Krishnaswamy i Wilkowski. L51474 Brittle Fracture Initiation of Heavy-Wall Components. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), styczeń 1985. http://dx.doi.org/10.55274/r0010225.
Pełny tekst źródłaWilton, Donald R., i Stuart A. Long. Development of a Numerical Procedure to Treat Wires Attached to Arbitrarily Shaped Conducting Bodies. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1986. http://dx.doi.org/10.21236/ada169384.
Pełny tekst źródła