Artykuły w czasopismach na temat „Aqueous rechargeable mixed ion batteries”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Aqueous rechargeable mixed ion batteries”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Minami, Hironari, Hiroaki Izumi, Takumi Hasegawa, Fan Bai, Daisuke Mori, Sou Taminato, Yasuo Takeda, Osamu Yamamoto i Nobuyuki Imanishi. "Aqueous Lithium--Air Batteries with High Power Density at Room Temperature under Air Atmosphere". Journal of Energy and Power Technology 03, nr 03 (30.06.2021): 1. http://dx.doi.org/10.21926/jept.2103041.
Pełny tekst źródłaYan, Huihui, Cheng Yang, Liping Zhao, Jing Liu, Peng Zhang i Lian Gao. "Proton-assisted mixed-valence vanadium oxides cathode with long-term stability for rechargeable aqueous zinc ion batteries". Electrochimica Acta 429 (październik 2022): 141003. http://dx.doi.org/10.1016/j.electacta.2022.141003.
Pełny tekst źródłaGao, Yaning, Haoyi Yang, Xinran Wang, Ying Bai, Na Zhu, Shuainan Guo, Liumin Suo, Hong Li, Huajie Xu i Chuan Wu. "The Compensation Effect Mechanism of Fe–Ni Mixed Prussian Blue Analogues in Aqueous Rechargeable Aluminum‐Ion Batteries". ChemSusChem 13, nr 4 (27.01.2020): 732–40. http://dx.doi.org/10.1002/cssc.201903067.
Pełny tekst źródłaKim, Seokhun, Vaiyapuri Soundharrajan, Sungjin Kim, Balaji Sambandam, Vinod Mathew, Jang-Yeon Hwang i Jaekook Kim. "Microwave-Assisted Rapid Synthesis of NH4V4O10 Layered Oxide: A High Energy Cathode for Aqueous Rechargeable Zinc Ion Batteries". Nanomaterials 11, nr 8 (24.07.2021): 1905. http://dx.doi.org/10.3390/nano11081905.
Pełny tekst źródłaYoshida, Luna, Yuki Orikasa i Masashi Ishikawa. "Mechanism of Improved Lithium-Sulfur Battery Performance by Oxidation Treatment to Microporous Carbon as Sulfur Matrix". ECS Meeting Abstracts MA2022-02, nr 64 (9.10.2022): 2299. http://dx.doi.org/10.1149/ma2022-02642299mtgabs.
Pełny tekst źródłaKim, Haegyeom, Jihyun Hong, Kyu-Young Park, Hyungsub Kim, Sung-Wook Kim i Kisuk Kang. "Aqueous Rechargeable Li and Na Ion Batteries". Chemical Reviews 114, nr 23 (11.09.2014): 11788–827. http://dx.doi.org/10.1021/cr500232y.
Pełny tekst źródłaBin, Duan, Fei Wang, Andebet Gedamu Tamirat, Liumin Suo, Yonggang Wang, Chunsheng Wang i Yongyao Xia. "Progress in Aqueous Rechargeable Sodium-Ion Batteries". Advanced Energy Materials 8, nr 17 (12.03.2018): 1703008. http://dx.doi.org/10.1002/aenm.201703008.
Pełny tekst źródłaLiu, Zhuoxin, Yan Huang, Yang Huang, Qi Yang, Xinliang Li, Zhaodong Huang i Chunyi Zhi. "Voltage issue of aqueous rechargeable metal-ion batteries". Chemical Society Reviews 49, nr 1 (2020): 180–232. http://dx.doi.org/10.1039/c9cs00131j.
Pełny tekst źródłaTang, Boya, Lutong Shan, Shuquan Liang i Jiang Zhou. "Issues and opportunities facing aqueous zinc-ion batteries". Energy & Environmental Science 12, nr 11 (2019): 3288–304. http://dx.doi.org/10.1039/c9ee02526j.
Pełny tekst źródłaVerma, Vivek, Sonal Kumar, William Manalastas i Madhavi Srinivasan. "Undesired Reactions in Aqueous Rechargeable Zinc Ion Batteries". ACS Energy Letters 6, nr 5 (13.04.2021): 1773–85. http://dx.doi.org/10.1021/acsenergylett.1c00393.
Pełny tekst źródłaWainwright, David, i Jeffery Dahn. "Safer Rechargeable Lithium Ion Batteries Use Aqueous ElectroIyte". Materials Technology 11, nr 1 (styczeń 1996): 9–12. http://dx.doi.org/10.1080/10667857.1996.11752650.
Pełny tekst źródłaQin, H., Z. P. Song, H. Zhan i Y. H. Zhou. "Aqueous rechargeable alkali-ion batteries with polyimide anode". Journal of Power Sources 249 (marzec 2014): 367–72. http://dx.doi.org/10.1016/j.jpowsour.2013.10.091.
Pełny tekst źródłaLiu, M., H. Ao, Y. Jin, Z. Hou, X. Zhang, Y. Zhu i Y. Qian. "Aqueous rechargeable sodium ion batteries: developments and prospects". Materials Today Energy 17 (wrzesień 2020): 100432. http://dx.doi.org/10.1016/j.mtener.2020.100432.
Pełny tekst źródłaAo, Huaisheng, Yingyue Zhao, Jie Zhou, Wenlong Cai, Xiaotan Zhang, Yongchun Zhu i Yitai Qian. "Rechargeable aqueous hybrid ion batteries: developments and prospects". Journal of Materials Chemistry A 7, nr 32 (2019): 18708–34. http://dx.doi.org/10.1039/c9ta06433h.
Pełny tekst źródłaSharma, Lalit, i Arumugam Manthiram. "Polyanionic insertion hosts for aqueous rechargeable batteries". Journal of Materials Chemistry A 10, nr 12 (2022): 6376–96. http://dx.doi.org/10.1039/d1ta11080b.
Pełny tekst źródłaDemir-Cakan, Rezan, Mathieu Morcrette, Jean-Bernard Leriche i Jean-Marie Tarascon. "An aqueous electrolyte rechargeable Li-ion/polysulfide battery". J. Mater. Chem. A 2, nr 24 (2014): 9025–29. http://dx.doi.org/10.1039/c4ta01308e.
Pełny tekst źródłaMiyazaki, Kohei, Toshiki Shimada, Satomi Ito, Yuko Yokoyama, Tomokazu Fukutsuka i Takeshi Abe. "Enhanced resistance to oxidative decomposition of aqueous electrolytes for aqueous lithium-ion batteries". Chemical Communications 52, nr 28 (2016): 4979–82. http://dx.doi.org/10.1039/c6cc00873a.
Pełny tekst źródłaLiu, Zhuoxin, Yan Huang, Yang Huang, Qi Yang, Xinliang Li, Zhaodong Huang i Chunyi Zhi. "Correction: Voltage issue of aqueous rechargeable metal-ion batteries". Chemical Society Reviews 49, nr 2 (2020): 643–44. http://dx.doi.org/10.1039/c9cs90105a.
Pełny tekst źródłaPark, Sodam, Imanuel Kristanto, Gwan Yeong Jung, David B. Ahn, Kihun Jeong, Sang Kyu Kwak i Sang-Young Lee. "A single-ion conducting covalent organic framework for aqueous rechargeable Zn-ion batteries". Chemical Science 11, nr 43 (2020): 11692–98. http://dx.doi.org/10.1039/d0sc02785e.
Pełny tekst źródłaGao, Yaning, Haoyi Yang, Ying Bai i Chuan Wu. "Mn-based oxides for aqueous rechargeable metal ion batteries". Journal of Materials Chemistry A 9, nr 19 (2021): 11472–500. http://dx.doi.org/10.1039/d1ta01951a.
Pełny tekst źródłaYue, Jinming, i Liumin Suo. "Progress in Rechargeable Aqueous Alkali-Ion Batteries in China". Energy & Fuels 35, nr 11 (24.05.2021): 9228–39. http://dx.doi.org/10.1021/acs.energyfuels.1c00817.
Pełny tekst źródłaYang, Mingrui, Jun Luo, Xiaoniu Guo, Jiacheng Chen, Yuliang Cao i Weihua Chen. "Aqueous Rechargeable Sodium-Ion Batteries: From Liquid to Hydrogel". Batteries 8, nr 10 (12.10.2022): 180. http://dx.doi.org/10.3390/batteries8100180.
Pełny tekst źródłaPan, Zhenghui, Ximeng Liu, Jie Yang, Xin Li, Zhaolin Liu, Xian Jun Loh i John Wang. "Aqueous Rechargeable Multivalent Metal‐Ion Batteries: Advances and Challenges". Advanced Energy Materials 11, nr 24 (12.05.2021): 2100608. http://dx.doi.org/10.1002/aenm.202100608.
Pełny tekst źródłaJeong, Seonghun, Byung Hoon Kim, Yeong Don Park, Chang Yeon Lee, Junyoung Mun i Artur Tron. "Artificially coated NaFePO4 for aqueous rechargeable sodium-ion batteries". Journal of Alloys and Compounds 784 (maj 2019): 720–26. http://dx.doi.org/10.1016/j.jallcom.2019.01.046.
Pełny tekst źródłaFenta, Fekadu Wubatu, Bizualem Wakuma Olbasa, Meng-Che Tsai, Misganaw Adigo Weret, Tilahun Awoke Zegeye, Chen-Jui Huang, Wei-Hsiang Huang i in. "Electrochemical transformation reaction of Cu–MnO in aqueous rechargeable zinc-ion batteries for high performance and long cycle life". Journal of Materials Chemistry A 8, nr 34 (2020): 17595–607. http://dx.doi.org/10.1039/d0ta04175k.
Pełny tekst źródłaGong, Jiangfeng, Hao Li, Kaixiao Zhang, Zhupeng Zhang, Jie Cao, Zhibin Shao, Chunmei Tang, Shaojie Fu, Qianjin Wang i Xiang Wu. "Zinc-Ion Storage Mechanism of Polyaniline for Rechargeable Aqueous Zinc-Ion Batteries". Nanomaterials 12, nr 9 (23.04.2022): 1438. http://dx.doi.org/10.3390/nano12091438.
Pełny tekst źródłaChaithra Munivenkatappa, Vijeth Rajshekar Shetty i Suresh Gurukar Shivappa. "Chalcone as Anode Material for Aqueous Rechargeable Lithium-Ion Batteries". Russian Journal of Electrochemistry 57, nr 4 (kwiecień 2021): 419–33. http://dx.doi.org/10.1134/s1023193520120162.
Pełny tekst źródłaKumankuma-Sarpong, James, Shuai Tang, Wei Guo i Yongzhu Fu. "Naphthoquinone-Based Composite Cathodes for Aqueous Rechargeable Zinc-Ion Batteries". ACS Applied Materials & Interfaces 13, nr 3 (17.01.2021): 4084–92. http://dx.doi.org/10.1021/acsami.0c21339.
Pełny tekst źródłaWu, Buke, Wen Luo, Ming Li, Lin Zeng i Liqiang Mai. "Achieving better aqueous rechargeable zinc ion batteries with heterostructure electrodes". Nano Research 14, nr 9 (7.04.2021): 3174–87. http://dx.doi.org/10.1007/s12274-021-3392-1.
Pełny tekst źródłaPuttaswamy, Rangaswamy, Suresh Gurukar Shivappa, Mahadevan Kittappa Malavalli i Yanjerappa Arthoba Nayaka. "Triclinic LiVPO4F/C Cathode For Aqueous Rechargeable Lithium-Ion Batteries". Advanced Materials Letters 10, nr 3 (31.12.2018): 193–200. http://dx.doi.org/10.5185/amlett.2019.2141.
Pełny tekst źródłaRu, Yue, Shasha Zheng, Huaiguo Xue i Huan Pang. "Layered V-MOF nanorods for rechargeable aqueous zinc-ion batteries". Materials Today Chemistry 21 (sierpień 2021): 100513. http://dx.doi.org/10.1016/j.mtchem.2021.100513.
Pełny tekst źródłaChoi, Dongkyu, Seonguk Lim i Dongwook Han. "Advanced metal–organic frameworks for aqueous sodium-ion rechargeable batteries". Journal of Energy Chemistry 53 (luty 2021): 396–406. http://dx.doi.org/10.1016/j.jechem.2020.07.024.
Pełny tekst źródłaLiu, Shude, Ling Kang, Jong Min Kim, Young Tea Chun, Jian Zhang i Seong Chan Jun. "Recent Advances in Vanadium‐Based Aqueous Rechargeable Zinc‐Ion Batteries". Advanced Energy Materials 10, nr 25 (15.05.2020): 2000477. http://dx.doi.org/10.1002/aenm.202000477.
Pełny tekst źródłaLi, Siqi, Yanan Wei, Qiong Wu, Yuan Han, Guixiang Qain, Jiaming Liu i Chao Yang. "Spherical PDA@MnO2 cathode for rechargeable aqueous zinc ion batteries". Materials Letters 348 (październik 2023): 134671. http://dx.doi.org/10.1016/j.matlet.2023.134671.
Pełny tekst źródłaDemir-Cakan, Rezan, M. Rosa Palacin i Laurence Croguennec. "Rechargeable aqueous electrolyte batteries: from univalent to multivalent cation chemistry". Journal of Materials Chemistry A 7, nr 36 (2019): 20519–39. http://dx.doi.org/10.1039/c9ta04735b.
Pełny tekst źródłaGonzález, J. R., F. Nacimiento, M. Cabello, R. Alcántara, P. Lavela i J. L. Tirado. "Reversible intercalation of aluminium into vanadium pentoxide xerogel for aqueous rechargeable batteries". RSC Advances 6, nr 67 (2016): 62157–64. http://dx.doi.org/10.1039/c6ra11030d.
Pełny tekst źródłaSakamoto, Ryo, Maho Yamashita, Kosuke Nakamoto, Yongquan Zhou, Nobuko Yoshimoto, Kenta Fujii, Toshio Yamaguchi, Ayuko Kitajou i Shigeto Okada. "Local structure of a highly concentrated NaClO4 aqueous solution-type electrolyte for sodium ion batteries". Physical Chemistry Chemical Physics 22, nr 45 (2020): 26452–58. http://dx.doi.org/10.1039/d0cp04376a.
Pełny tekst źródłaXu, L., Y. Zhang, J. Zheng, H. Jiang, T. Hu i C. Meng. "Ammonium ion intercalated hydrated vanadium pentoxide for advanced aqueous rechargeable Zn-ion batteries". Materials Today Energy 18 (grudzień 2020): 100509. http://dx.doi.org/10.1016/j.mtener.2020.100509.
Pełny tekst źródłaChomkhuntod, Praeploy, Kanit Hantanasirisakul, Salatan Duangdangchote, Nutthaphon Phattharasupakun i Montree Sawangphruk. "The charge density of intercalants inside layered birnessite manganese oxide nanosheets determining Zn-ion storage capability towards rechargeable Zn-ion batteries". Journal of Materials Chemistry A 10, nr 10 (2022): 5561–68. http://dx.doi.org/10.1039/d1ta09968j.
Pełny tekst źródłaLuo, Zhiqiang, Silin Zheng, Shuo Zhao, Xin Jiao, Zongshuai Gong, Fengshi Cai, Yueqin Duan, Fujun Li i Zhihao Yuan. "High energy density aqueous zinc–benzoquinone batteries enabled by carbon cloth with multiple anchoring effects". Journal of Materials Chemistry A 9, nr 10 (2021): 6131–38. http://dx.doi.org/10.1039/d0ta12127d.
Pełny tekst źródłaYou, Gongchuan, i Liang He. "High Performance Electrolyte for Iron-Ion batteries". Academic Journal of Science and Technology 5, nr 2 (2.04.2023): 244–47. http://dx.doi.org/10.54097/ajst.v5i2.6995.
Pełny tekst źródłaDuan, Wenyuan, Mubashir Husain, Yanlin Li, Najeeb ur Rehman Lashari, Yuhuan Yang, Cheng Ma, Yuzhen Zhao i Xiaorui Li. "Enhanced charge transport properties of an LFP/C/graphite composite as a cathode material for aqueous rechargeable lithium batteries". RSC Advances 13, nr 36 (2023): 25327–33. http://dx.doi.org/10.1039/d3ra04143c.
Pełny tekst źródłaLiu, Yiyang, Guanjie He, Hao Jiang, Ivan P. Parkin, Paul R. Shearing i Dan J. L. Brett. "Cathode Design for Aqueous Rechargeable Multivalent Ion Batteries: Challenges and Opportunities". Advanced Functional Materials 31, nr 13 (20.01.2021): 2010445. http://dx.doi.org/10.1002/adfm.202010445.
Pełny tekst źródłaTang, Mengyao, Qiaonan Zhu, Pengfei Hu, Li Jiang, Rongyang Liu, Jiawei Wang, Liwei Cheng, Xiuhui Zhang, Wenxing Chen i Hua Wang. "Ultrafast Rechargeable Aqueous Zinc‐Ion Batteries Based on Stable Radical Chemistry". Advanced Functional Materials 31, nr 33 (13.06.2021): 2102011. http://dx.doi.org/10.1002/adfm.202102011.
Pełny tekst źródłaKumar, Santosh, Hocheol Yoon, Hyeonghun Park, Geumyong Park, Seokho Suh i Hyeong-Jin Kim. "A dendrite-free anode for stable aqueous rechargeable zinc-ion batteries". Journal of Industrial and Engineering Chemistry 108 (kwiecień 2022): 321–27. http://dx.doi.org/10.1016/j.jiec.2022.01.011.
Pełny tekst źródłaWang, L., i J. Zheng. "Recent advances in cathode materials of rechargeable aqueous zinc-ion batteries". Materials Today Advances 7 (wrzesień 2020): 100078. http://dx.doi.org/10.1016/j.mtadv.2020.100078.
Pełny tekst źródłaLiu, Tingting, Xing Cheng, Haoxiang Yu, Haojie Zhu, Na Peng, Runtian Zheng, Jundong Zhang, Miao Shui, Yanhua Cui i Jie Shu. "An overview and future perspectives of aqueous rechargeable polyvalent ion batteries". Energy Storage Materials 18 (marzec 2019): 68–91. http://dx.doi.org/10.1016/j.ensm.2018.09.027.
Pełny tekst źródłaSada, Krishnakanth, Baskar Senthilkumar i Prabeer Barpanda. "Cryptomelane K1.33Mn8O16 as a cathode for rechargeable aqueous zinc-ion batteries". Journal of Materials Chemistry A 7, nr 41 (2019): 23981–88. http://dx.doi.org/10.1039/c9ta05836b.
Pełny tekst źródłaWu, Yutong, Yamin Zhang, Yao Ma, Joshua D. Howe, Haochen Yang, Peng Chen, Sireesha Aluri i Nian Liu. "Ion-Sieving Carbon Nanoshells for Deeply Rechargeable Zn-Based Aqueous Batteries". Advanced Energy Materials 8, nr 36 (30.10.2018): 1802470. http://dx.doi.org/10.1002/aenm.201802470.
Pełny tekst źródłaCao, Ziyi, Peiyuan Zhuang, Xiang Zhang, Mingxin Ye, Jianfeng Shen i Pulickel M. Ajayan. "Strategies for Dendrite‐Free Anode in Aqueous Rechargeable Zinc Ion Batteries". Advanced Energy Materials 10, nr 30 (30.06.2020): 2001599. http://dx.doi.org/10.1002/aenm.202001599.
Pełny tekst źródła