Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Aqueous rechargeable batteries.

Artykuły w czasopismach na temat „Aqueous rechargeable batteries”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Aqueous rechargeable batteries”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Bennet, P. D., Kathryn R. Bullock i M. Elaine Fiorino. "Aqueous Rechargeable Batteries". Electrochemical Society Interface 4, nr 4 (1.12.1995): 26–30. http://dx.doi.org/10.1149/2.f05954if.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Puttaswamy, Rangaswamy, Suresh Gurukar Shivappa, Mahadevan Kittappa Malavalli i Yanjerappa Arthoba Nayaka. "Triclinic LiVPO4F/C Cathode For Aqueous Rechargeable Lithium-Ion Batteries". Advanced Materials Letters 10, nr 3 (31.12.2018): 193–200. http://dx.doi.org/10.5185/amlett.2019.2141.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Yan, Jing, Jing Wang, Hao Liu, Zhumabay Bakenov, Denise Gosselink i P. Chen. "Rechargeable hybrid aqueous batteries". Journal of Power Sources 216 (październik 2012): 222–26. http://dx.doi.org/10.1016/j.jpowsour.2012.05.063.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Smajic, Jasmin, Bashir E. Hasanov, Amira Alazmi, Abdul‐Hamid Emwas, Nimer Wehbe, Alessandro Genovese, Abdulrahman El Labban i Pedro M. F. J. Costa. "Aqueous Aluminum‐Carbon Rechargeable Batteries". Advanced Materials Interfaces 9, nr 4 (31.12.2021): 2101733. http://dx.doi.org/10.1002/admi.202101733.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

IMANISHI, Nobuyuki, Yasuo TAKEDA i Osamu YAMAMOTO. "Aqueous Lithium-Air Rechargeable Batteries". Electrochemistry 80, nr 10 (2012): 706–15. http://dx.doi.org/10.5796/electrochemistry.80.706.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Beck, Fritz, i Paul Rüetschi. "Rechargeable batteries with aqueous electrolytes". Electrochimica Acta 45, nr 15-16 (maj 2000): 2467–82. http://dx.doi.org/10.1016/s0013-4686(00)00344-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Zhang, Tao, Nobuyuki Imanishi, Yasuo Takeda i Osamu Yamamoto. "Aqueous Lithium/Air Rechargeable Batteries". Chemistry Letters 40, nr 7 (5.07.2011): 668–73. http://dx.doi.org/10.1246/cl.2011.668.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Liu, Jilei, Chaohe Xu, Zhen Chen, Shibing Ni i Ze Xiang Shen. "Progress in aqueous rechargeable batteries". Green Energy & Environment 3, nr 1 (styczeń 2018): 20–41. http://dx.doi.org/10.1016/j.gee.2017.10.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Tang, Boya, Lutong Shan, Shuquan Liang i Jiang Zhou. "Issues and opportunities facing aqueous zinc-ion batteries". Energy & Environmental Science 12, nr 11 (2019): 3288–304. http://dx.doi.org/10.1039/c9ee02526j.

Pełny tekst źródła
Streszczenie:
We retrospect recent advances in rechargeable aqueous zinc-ion batteries system and the facing challenges of aqueous zinc-ion batteries. Importantly, some concerns and feasible solutions for achieving practical aqueous zinc-ion batteries are discussed in detail.
Style APA, Harvard, Vancouver, ISO itp.
10

Li, W., J. R. Dahn i D. S. Wainwright. "Rechargeable Lithium Batteries with Aqueous Electrolytes". Science 264, nr 5162 (20.05.1994): 1115–18. http://dx.doi.org/10.1126/science.264.5162.1115.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Miyazaki, Kohei, Toshiki Shimada, Satomi Ito, Yuko Yokoyama, Tomokazu Fukutsuka i Takeshi Abe. "Enhanced resistance to oxidative decomposition of aqueous electrolytes for aqueous lithium-ion batteries". Chemical Communications 52, nr 28 (2016): 4979–82. http://dx.doi.org/10.1039/c6cc00873a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Ao, Huaisheng, Yingyue Zhao, Jie Zhou, Wenlong Cai, Xiaotan Zhang, Yongchun Zhu i Yitai Qian. "Rechargeable aqueous hybrid ion batteries: developments and prospects". Journal of Materials Chemistry A 7, nr 32 (2019): 18708–34. http://dx.doi.org/10.1039/c9ta06433h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Liu, Zhuoxin, Yan Huang, Yang Huang, Qi Yang, Xinliang Li, Zhaodong Huang i Chunyi Zhi. "Voltage issue of aqueous rechargeable metal-ion batteries". Chemical Society Reviews 49, nr 1 (2020): 180–232. http://dx.doi.org/10.1039/c9cs00131j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Leung, P., D. Aili, Q. Xu, A. Rodchanarowan i A. A. Shah. "Rechargeable organic–air redox flow batteries". Sustainable Energy & Fuels 2, nr 10 (2018): 2252–59. http://dx.doi.org/10.1039/c8se00205c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Sharma, Lalit, i Arumugam Manthiram. "Polyanionic insertion hosts for aqueous rechargeable batteries". Journal of Materials Chemistry A 10, nr 12 (2022): 6376–96. http://dx.doi.org/10.1039/d1ta11080b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Sakamoto, Ryo, Maho Yamashita, Kosuke Nakamoto, Yongquan Zhou, Nobuko Yoshimoto, Kenta Fujii, Toshio Yamaguchi, Ayuko Kitajou i Shigeto Okada. "Local structure of a highly concentrated NaClO4 aqueous solution-type electrolyte for sodium ion batteries". Physical Chemistry Chemical Physics 22, nr 45 (2020): 26452–58. http://dx.doi.org/10.1039/d0cp04376a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Fenta, Fekadu Wubatu, Bizualem Wakuma Olbasa, Meng-Che Tsai, Misganaw Adigo Weret, Tilahun Awoke Zegeye, Chen-Jui Huang, Wei-Hsiang Huang i in. "Electrochemical transformation reaction of Cu–MnO in aqueous rechargeable zinc-ion batteries for high performance and long cycle life". Journal of Materials Chemistry A 8, nr 34 (2020): 17595–607. http://dx.doi.org/10.1039/d0ta04175k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Clark, Simon, Aroa R. Mainar, Elena Iruin, Luis C. Colmenares, J. Alberto Blázquez, Julian R. Tolchard, Arnulf Latz i Birger Horstmann. "Towards rechargeable zinc–air batteries with aqueous chloride electrolytes". Journal of Materials Chemistry A 7, nr 18 (2019): 11387–99. http://dx.doi.org/10.1039/c9ta01190k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Hu, Zhiqiu, Yue Guo, Hongchang Jin, Hengxing Ji i Li-Jun Wan. "A rechargeable aqueous aluminum–sulfur battery through acid activation in water-in-salt electrolyte". Chemical Communications 56, nr 13 (2020): 2023–26. http://dx.doi.org/10.1039/c9cc08415k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Liu, Zhuoxin, Yan Huang, Yang Huang, Qi Yang, Xinliang Li, Zhaodong Huang i Chunyi Zhi. "Correction: Voltage issue of aqueous rechargeable metal-ion batteries". Chemical Society Reviews 49, nr 2 (2020): 643–44. http://dx.doi.org/10.1039/c9cs90105a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Demir-Cakan, Rezan, Mathieu Morcrette, Jean-Bernard Leriche i Jean-Marie Tarascon. "An aqueous electrolyte rechargeable Li-ion/polysulfide battery". J. Mater. Chem. A 2, nr 24 (2014): 9025–29. http://dx.doi.org/10.1039/c4ta01308e.

Pełny tekst źródła
Streszczenie:
In spite of great research efforts on Li–S batteries in aprotic organic electrolytes, there have been very few studies showing the potential application of this system in aqueous electrolyte. Herein, we explore this option and report on a cheaper and safer new aqueous system coupling a well-known cathode material in Li-ion batteries (i.e. LiMn2O4) with a dissolved polysulfide anode.
Style APA, Harvard, Vancouver, ISO itp.
22

Liu, Nian. "(Invited) Deeply Rechargeable Zinc Anodes for High-Energy Rechargeable Aqueous Batteries". ECS Meeting Abstracts MA2022-01, nr 38 (7.07.2022): 1664. http://dx.doi.org/10.1149/ma2022-01381664mtgabs.

Pełny tekst źródła
Streszczenie:
Zinc-based aqueous batteries are promising alternative to many mainstream battery technologies today, due to the superior safety. However, existing zinc anodes suffer from either poor cycle life or low utilization in both neutral and alkaline aqueous electrolytes. Passivation, dissolution, and hydrogen evolution are three main reasons for irreversibility of zinc anodes in alkaline electrolytes, which limits the rechargeability and usable energy density. In this talk, I will present our recent works on using nanoscale material design to overcome passivation, dissolution, and hydrogen evolution issues of zinc anode, towards a deeply rechargeable zinc-based battery. I will also introduce the battery-gas chromatography quantitative analysis, as well as in situ microscopy methodologies we have developed, to quantify gas evolution side reaction, as well as visualize the reaction on electrodes during operation.
Style APA, Harvard, Vancouver, ISO itp.
23

Nam, Kwan Woo, Heejin Kim, Jin Hyeok Choi i Jang Wook Choi. "Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries". Energy & Environmental Science 12, nr 6 (2019): 1999–2009. http://dx.doi.org/10.1039/c9ee00718k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Han, Cuiping, Jiaxiong Zhu, Chunyi Zhi i Hongfei Li. "The rise of aqueous rechargeable batteries with organic electrode materials". Journal of Materials Chemistry A 8, nr 31 (2020): 15479–512. http://dx.doi.org/10.1039/d0ta03947k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

He, Z., F. Xiong, S. Tan, X. Yao, C. Zhang i Q. An. "Iron metal anode for aqueous rechargeable batteries". Materials Today Advances 11 (wrzesień 2021): 100156. http://dx.doi.org/10.1016/j.mtadv.2021.100156.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Huang, Jianhang, Xuan Qiu, Nan Wang i Yonggang Wang. "Aqueous rechargeable zinc batteries: Challenges and opportunities". Current Opinion in Electrochemistry 30 (grudzień 2021): 100801. http://dx.doi.org/10.1016/j.coelec.2021.100801.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Li, Haizeng, Curtis J. Firby i Abdulhakem Y. Elezzabi. "Rechargeable Aqueous Hybrid Zn2+/Al3+ Electrochromic Batteries". Joule 3, nr 9 (wrzesień 2019): 2268–78. http://dx.doi.org/10.1016/j.joule.2019.06.021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Wang, H., Z. Chen, Z. Ji, P. Wang, J. Wang, W. Ling i Y. Huang. "Temperature adaptability issue of aqueous rechargeable batteries". Materials Today Energy 19 (marzec 2021): 100577. http://dx.doi.org/10.1016/j.mtener.2020.100577.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Kim, Haegyeom, Jihyun Hong, Kyu-Young Park, Hyungsub Kim, Sung-Wook Kim i Kisuk Kang. "Aqueous Rechargeable Li and Na Ion Batteries". Chemical Reviews 114, nr 23 (11.09.2014): 11788–827. http://dx.doi.org/10.1021/cr500232y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Yang, Dan, Yanping Zhou, Hongbo Geng, Chuntai Liu, Bo Lu, Xianhong Rui i Qingyu Yan. "Pathways towards high energy aqueous rechargeable batteries". Coordination Chemistry Reviews 424 (grudzień 2020): 213521. http://dx.doi.org/10.1016/j.ccr.2020.213521.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Manjunatha, H., G. S. Suresh i T. V. Venkatesha. "Electrode materials for aqueous rechargeable lithium batteries". Journal of Solid State Electrochemistry 15, nr 3 (12.06.2010): 431–45. http://dx.doi.org/10.1007/s10008-010-1117-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Shin, Jaeho, i Jang Wook Choi. "Opportunities and Reality of Aqueous Rechargeable Batteries". Advanced Energy Materials 10, nr 28 (5.06.2020): 2001386. http://dx.doi.org/10.1002/aenm.202001386.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Bin, Duan, Fei Wang, Andebet Gedamu Tamirat, Liumin Suo, Yonggang Wang, Chunsheng Wang i Yongyao Xia. "Progress in Aqueous Rechargeable Sodium-Ion Batteries". Advanced Energy Materials 8, nr 17 (12.03.2018): 1703008. http://dx.doi.org/10.1002/aenm.201703008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Zhang, Tao, Nobuyuki Imanishi, Yasuo Takeda i Osamu Yamamoto. "ChemInform Abstract: Aqueous Lithium/Air Rechargeable Batteries". ChemInform 42, nr 44 (6.10.2011): no. http://dx.doi.org/10.1002/chin.201144210.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

González, J. R., F. Nacimiento, M. Cabello, R. Alcántara, P. Lavela i J. L. Tirado. "Reversible intercalation of aluminium into vanadium pentoxide xerogel for aqueous rechargeable batteries". RSC Advances 6, nr 67 (2016): 62157–64. http://dx.doi.org/10.1039/c6ra11030d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Ma, Longtao, Shengmei Chen, Hongfei Li, Zhaoheng Ruan, Zijie Tang, Zhuoxin Liu, Zifeng Wang i in. "Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(iii) rich-electrode". Energy & Environmental Science 11, nr 9 (2018): 2521–30. http://dx.doi.org/10.1039/c8ee01415a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Zhu, Qiancheng, Mingyu Cheng, Xianfeng Yang, Bing Zhang, Zhanzi Wan, Qin Xiao i Ying Yu. "Self-supported ultrathin bismuth nanosheets acquired by in situ topotactic transformation of BiOCl as a high performance aqueous anode material". Journal of Materials Chemistry A 7, nr 12 (2019): 6784–92. http://dx.doi.org/10.1039/c8ta11979a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Luo, Zhiqiang, Silin Zheng, Shuo Zhao, Xin Jiao, Zongshuai Gong, Fengshi Cai, Yueqin Duan, Fujun Li i Zhihao Yuan. "High energy density aqueous zinc–benzoquinone batteries enabled by carbon cloth with multiple anchoring effects". Journal of Materials Chemistry A 9, nr 10 (2021): 6131–38. http://dx.doi.org/10.1039/d0ta12127d.

Pełny tekst źródła
Streszczenie:
Benzoquinone with high theoretical capacity is anchored on N-plasma engraved porous carbon as a desirable cathode for rechargeable aqueous Zn-ion batteries. Such batteries display tremendous potential in large-scale energy storage applications.
Style APA, Harvard, Vancouver, ISO itp.
39

Minami, Hironari, Hiroaki Izumi, Takumi Hasegawa, Fan Bai, Daisuke Mori, Sou Taminato, Yasuo Takeda, Osamu Yamamoto i Nobuyuki Imanishi. "Aqueous Lithium--Air Batteries with High Power Density at Room Temperature under Air Atmosphere". Journal of Energy and Power Technology 03, nr 03 (30.06.2021): 1. http://dx.doi.org/10.21926/jept.2103041.

Pełny tekst źródła
Streszczenie:
Rechargeable batteries with higher energy and power density exceeding the performance of the currently available lithium-ion batteries are suitable for application as the power source in electric vehicles (EVs). Aqueous lithium-air batteries are candidates for various EV applications due to their high energy density of 1910 Wh kg-1. The present study reports a rechargeable aqueous lithium-air battery with high power density at room temperature. The battery cell comprised a lithium anode, a non-aqueous anode electrolyte, a water-stable lithium-ion-conducting NASICON type separator, an aqueous catholyte, and an air electrode. The non-aqueous electrolyte served as an interlayer between the lithium anode and the solid electrolyte because the solid electrolyte in contact with lithium was unstable. The mixed separator comprised a Kimwipe paper and a Celgard polypropylene membrane for the interlayer electrolyte, which was used for preventing the formation of lithium dendrites at a high current density. The proposed aqueous lithium-air battery was successfully cycled at 2 mA cm-2 for 6 h at room temperature under an air atmosphere.
Style APA, Harvard, Vancouver, ISO itp.
40

Chen, Peng, Yutong Wu, Yamin Zhang, Tzu-Ho Wu, Yao Ma, Chloe Pelkowski, Haochen Yang, Yi Zhang, Xianwei Hu i Nian Liu. "A deeply rechargeable zinc anode with pomegranate-inspired nanostructure for high-energy aqueous batteries". Journal of Materials Chemistry A 6, nr 44 (2018): 21933–40. http://dx.doi.org/10.1039/c8ta07809b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Kulkarni, Pranav, Debasis Ghosh i R. Geetha Balakrishna. "Recent progress in ‘water-in-salt’ and ‘water-in-salt’-hybrid-electrolyte-based high voltage rechargeable batteries". Sustainable Energy & Fuels 5, nr 6 (2021): 1619–54. http://dx.doi.org/10.1039/d0se01313g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Park, Sodam, Imanuel Kristanto, Gwan Yeong Jung, David B. Ahn, Kihun Jeong, Sang Kyu Kwak i Sang-Young Lee. "A single-ion conducting covalent organic framework for aqueous rechargeable Zn-ion batteries". Chemical Science 11, nr 43 (2020): 11692–98. http://dx.doi.org/10.1039/d0sc02785e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Duan, Wenyuan, Mubashir Husain, Yanlin Li, Najeeb ur Rehman Lashari, Yuhuan Yang, Cheng Ma, Yuzhen Zhao i Xiaorui Li. "Enhanced charge transport properties of an LFP/C/graphite composite as a cathode material for aqueous rechargeable lithium batteries". RSC Advances 13, nr 36 (2023): 25327–33. http://dx.doi.org/10.1039/d3ra04143c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Wang, Xiao, Baojuan Xi, Zhenyu Feng, Weihua Chen, Haibo Li, Yuxi Jia, Jinkui Feng, Yitai Qian i Shenglin Xiong. "Layered (NH4)2V6O16·1.5H2O nanobelts as a high-performance cathode for aqueous zinc-ion batteries". Journal of Materials Chemistry A 7, nr 32 (2019): 19130–39. http://dx.doi.org/10.1039/c9ta05922a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Lu, Changyu, Tuan K. A. Hoang, The Nam Long Doan, Hongbin Zhao, Ran Pan, Li Yang, Weisheng Guan i P. Chen. "Rechargeable hybrid aqueous batteries using silica nanoparticle doped aqueous electrolytes". Applied Energy 170 (maj 2016): 58–64. http://dx.doi.org/10.1016/j.apenergy.2016.02.117.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Shiga, Tohru, Yuichi Kato i Yoko Hase. "Coupling of nitroxyl radical as an electrochemical charging catalyst and ionic liquid for calcium plating/stripping toward a rechargeable calcium–oxygen battery". Journal of Materials Chemistry A 5, nr 25 (2017): 13212–19. http://dx.doi.org/10.1039/c7ta03422a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Pan, Wending, Yifei Wang, Yingguang Zhang, Holly Yu Ho Kwok, Muyan Wu, Xiaolong Zhao i Dennis Y. C. Leung. "A low-cost and dendrite-free rechargeable aluminium-ion battery with superior performance". Journal of Materials Chemistry A 7, nr 29 (2019): 17420–25. http://dx.doi.org/10.1039/c9ta05207k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Verma, Vivek, Sonal Kumar, William Manalastas i Madhavi Srinivasan. "Undesired Reactions in Aqueous Rechargeable Zinc Ion Batteries". ACS Energy Letters 6, nr 5 (13.04.2021): 1773–85. http://dx.doi.org/10.1021/acsenergylett.1c00393.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Wainwright, David, i Jeffery Dahn. "Safer Rechargeable Lithium Ion Batteries Use Aqueous ElectroIyte". Materials Technology 11, nr 1 (styczeń 1996): 9–12. http://dx.doi.org/10.1080/10667857.1996.11752650.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Li, Leilei, Long Chen, Yuehua Wen, Tengfei Xiong, Hong Xu, Wenfeng Zhang, Gaoping Cao, Yusheng Yang, Liqiang Mai i Hao Zhang. "Phenazine anodes for ultralongcycle-life aqueous rechargeable batteries". Journal of Materials Chemistry A 8, nr 48 (2020): 26013–22. http://dx.doi.org/10.1039/d0ta08600b.

Pełny tekst źródła
Streszczenie:
A nano-phenazine@Ketjen black anode was achieved by the in situ dissolution–precipitation method, possessing the cycle life of 100 000 times due to the stabilities and insolubilities of phenazine and its reduction products in aqueous electrolytes.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii