Artykuły w czasopismach na temat „Aqueous rechargeable batteries”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Aqueous rechargeable batteries”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Bennet, P. D., Kathryn R. Bullock i M. Elaine Fiorino. "Aqueous Rechargeable Batteries". Electrochemical Society Interface 4, nr 4 (1.12.1995): 26–30. http://dx.doi.org/10.1149/2.f05954if.
Pełny tekst źródłaPuttaswamy, Rangaswamy, Suresh Gurukar Shivappa, Mahadevan Kittappa Malavalli i Yanjerappa Arthoba Nayaka. "Triclinic LiVPO4F/C Cathode For Aqueous Rechargeable Lithium-Ion Batteries". Advanced Materials Letters 10, nr 3 (31.12.2018): 193–200. http://dx.doi.org/10.5185/amlett.2019.2141.
Pełny tekst źródłaYan, Jing, Jing Wang, Hao Liu, Zhumabay Bakenov, Denise Gosselink i P. Chen. "Rechargeable hybrid aqueous batteries". Journal of Power Sources 216 (październik 2012): 222–26. http://dx.doi.org/10.1016/j.jpowsour.2012.05.063.
Pełny tekst źródłaSmajic, Jasmin, Bashir E. Hasanov, Amira Alazmi, Abdul‐Hamid Emwas, Nimer Wehbe, Alessandro Genovese, Abdulrahman El Labban i Pedro M. F. J. Costa. "Aqueous Aluminum‐Carbon Rechargeable Batteries". Advanced Materials Interfaces 9, nr 4 (31.12.2021): 2101733. http://dx.doi.org/10.1002/admi.202101733.
Pełny tekst źródłaIMANISHI, Nobuyuki, Yasuo TAKEDA i Osamu YAMAMOTO. "Aqueous Lithium-Air Rechargeable Batteries". Electrochemistry 80, nr 10 (2012): 706–15. http://dx.doi.org/10.5796/electrochemistry.80.706.
Pełny tekst źródłaBeck, Fritz, i Paul Rüetschi. "Rechargeable batteries with aqueous electrolytes". Electrochimica Acta 45, nr 15-16 (maj 2000): 2467–82. http://dx.doi.org/10.1016/s0013-4686(00)00344-3.
Pełny tekst źródłaZhang, Tao, Nobuyuki Imanishi, Yasuo Takeda i Osamu Yamamoto. "Aqueous Lithium/Air Rechargeable Batteries". Chemistry Letters 40, nr 7 (5.07.2011): 668–73. http://dx.doi.org/10.1246/cl.2011.668.
Pełny tekst źródłaLiu, Jilei, Chaohe Xu, Zhen Chen, Shibing Ni i Ze Xiang Shen. "Progress in aqueous rechargeable batteries". Green Energy & Environment 3, nr 1 (styczeń 2018): 20–41. http://dx.doi.org/10.1016/j.gee.2017.10.001.
Pełny tekst źródłaTang, Boya, Lutong Shan, Shuquan Liang i Jiang Zhou. "Issues and opportunities facing aqueous zinc-ion batteries". Energy & Environmental Science 12, nr 11 (2019): 3288–304. http://dx.doi.org/10.1039/c9ee02526j.
Pełny tekst źródłaLi, W., J. R. Dahn i D. S. Wainwright. "Rechargeable Lithium Batteries with Aqueous Electrolytes". Science 264, nr 5162 (20.05.1994): 1115–18. http://dx.doi.org/10.1126/science.264.5162.1115.
Pełny tekst źródłaMiyazaki, Kohei, Toshiki Shimada, Satomi Ito, Yuko Yokoyama, Tomokazu Fukutsuka i Takeshi Abe. "Enhanced resistance to oxidative decomposition of aqueous electrolytes for aqueous lithium-ion batteries". Chemical Communications 52, nr 28 (2016): 4979–82. http://dx.doi.org/10.1039/c6cc00873a.
Pełny tekst źródłaAo, Huaisheng, Yingyue Zhao, Jie Zhou, Wenlong Cai, Xiaotan Zhang, Yongchun Zhu i Yitai Qian. "Rechargeable aqueous hybrid ion batteries: developments and prospects". Journal of Materials Chemistry A 7, nr 32 (2019): 18708–34. http://dx.doi.org/10.1039/c9ta06433h.
Pełny tekst źródłaLiu, Zhuoxin, Yan Huang, Yang Huang, Qi Yang, Xinliang Li, Zhaodong Huang i Chunyi Zhi. "Voltage issue of aqueous rechargeable metal-ion batteries". Chemical Society Reviews 49, nr 1 (2020): 180–232. http://dx.doi.org/10.1039/c9cs00131j.
Pełny tekst źródłaLeung, P., D. Aili, Q. Xu, A. Rodchanarowan i A. A. Shah. "Rechargeable organic–air redox flow batteries". Sustainable Energy & Fuels 2, nr 10 (2018): 2252–59. http://dx.doi.org/10.1039/c8se00205c.
Pełny tekst źródłaSharma, Lalit, i Arumugam Manthiram. "Polyanionic insertion hosts for aqueous rechargeable batteries". Journal of Materials Chemistry A 10, nr 12 (2022): 6376–96. http://dx.doi.org/10.1039/d1ta11080b.
Pełny tekst źródłaSakamoto, Ryo, Maho Yamashita, Kosuke Nakamoto, Yongquan Zhou, Nobuko Yoshimoto, Kenta Fujii, Toshio Yamaguchi, Ayuko Kitajou i Shigeto Okada. "Local structure of a highly concentrated NaClO4 aqueous solution-type electrolyte for sodium ion batteries". Physical Chemistry Chemical Physics 22, nr 45 (2020): 26452–58. http://dx.doi.org/10.1039/d0cp04376a.
Pełny tekst źródłaFenta, Fekadu Wubatu, Bizualem Wakuma Olbasa, Meng-Che Tsai, Misganaw Adigo Weret, Tilahun Awoke Zegeye, Chen-Jui Huang, Wei-Hsiang Huang i in. "Electrochemical transformation reaction of Cu–MnO in aqueous rechargeable zinc-ion batteries for high performance and long cycle life". Journal of Materials Chemistry A 8, nr 34 (2020): 17595–607. http://dx.doi.org/10.1039/d0ta04175k.
Pełny tekst źródłaClark, Simon, Aroa R. Mainar, Elena Iruin, Luis C. Colmenares, J. Alberto Blázquez, Julian R. Tolchard, Arnulf Latz i Birger Horstmann. "Towards rechargeable zinc–air batteries with aqueous chloride electrolytes". Journal of Materials Chemistry A 7, nr 18 (2019): 11387–99. http://dx.doi.org/10.1039/c9ta01190k.
Pełny tekst źródłaHu, Zhiqiu, Yue Guo, Hongchang Jin, Hengxing Ji i Li-Jun Wan. "A rechargeable aqueous aluminum–sulfur battery through acid activation in water-in-salt electrolyte". Chemical Communications 56, nr 13 (2020): 2023–26. http://dx.doi.org/10.1039/c9cc08415k.
Pełny tekst źródłaLiu, Zhuoxin, Yan Huang, Yang Huang, Qi Yang, Xinliang Li, Zhaodong Huang i Chunyi Zhi. "Correction: Voltage issue of aqueous rechargeable metal-ion batteries". Chemical Society Reviews 49, nr 2 (2020): 643–44. http://dx.doi.org/10.1039/c9cs90105a.
Pełny tekst źródłaDemir-Cakan, Rezan, Mathieu Morcrette, Jean-Bernard Leriche i Jean-Marie Tarascon. "An aqueous electrolyte rechargeable Li-ion/polysulfide battery". J. Mater. Chem. A 2, nr 24 (2014): 9025–29. http://dx.doi.org/10.1039/c4ta01308e.
Pełny tekst źródłaLiu, Nian. "(Invited) Deeply Rechargeable Zinc Anodes for High-Energy Rechargeable Aqueous Batteries". ECS Meeting Abstracts MA2022-01, nr 38 (7.07.2022): 1664. http://dx.doi.org/10.1149/ma2022-01381664mtgabs.
Pełny tekst źródłaNam, Kwan Woo, Heejin Kim, Jin Hyeok Choi i Jang Wook Choi. "Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries". Energy & Environmental Science 12, nr 6 (2019): 1999–2009. http://dx.doi.org/10.1039/c9ee00718k.
Pełny tekst źródłaHan, Cuiping, Jiaxiong Zhu, Chunyi Zhi i Hongfei Li. "The rise of aqueous rechargeable batteries with organic electrode materials". Journal of Materials Chemistry A 8, nr 31 (2020): 15479–512. http://dx.doi.org/10.1039/d0ta03947k.
Pełny tekst źródłaHe, Z., F. Xiong, S. Tan, X. Yao, C. Zhang i Q. An. "Iron metal anode for aqueous rechargeable batteries". Materials Today Advances 11 (wrzesień 2021): 100156. http://dx.doi.org/10.1016/j.mtadv.2021.100156.
Pełny tekst źródłaHuang, Jianhang, Xuan Qiu, Nan Wang i Yonggang Wang. "Aqueous rechargeable zinc batteries: Challenges and opportunities". Current Opinion in Electrochemistry 30 (grudzień 2021): 100801. http://dx.doi.org/10.1016/j.coelec.2021.100801.
Pełny tekst źródłaLi, Haizeng, Curtis J. Firby i Abdulhakem Y. Elezzabi. "Rechargeable Aqueous Hybrid Zn2+/Al3+ Electrochromic Batteries". Joule 3, nr 9 (wrzesień 2019): 2268–78. http://dx.doi.org/10.1016/j.joule.2019.06.021.
Pełny tekst źródłaWang, H., Z. Chen, Z. Ji, P. Wang, J. Wang, W. Ling i Y. Huang. "Temperature adaptability issue of aqueous rechargeable batteries". Materials Today Energy 19 (marzec 2021): 100577. http://dx.doi.org/10.1016/j.mtener.2020.100577.
Pełny tekst źródłaKim, Haegyeom, Jihyun Hong, Kyu-Young Park, Hyungsub Kim, Sung-Wook Kim i Kisuk Kang. "Aqueous Rechargeable Li and Na Ion Batteries". Chemical Reviews 114, nr 23 (11.09.2014): 11788–827. http://dx.doi.org/10.1021/cr500232y.
Pełny tekst źródłaYang, Dan, Yanping Zhou, Hongbo Geng, Chuntai Liu, Bo Lu, Xianhong Rui i Qingyu Yan. "Pathways towards high energy aqueous rechargeable batteries". Coordination Chemistry Reviews 424 (grudzień 2020): 213521. http://dx.doi.org/10.1016/j.ccr.2020.213521.
Pełny tekst źródłaManjunatha, H., G. S. Suresh i T. V. Venkatesha. "Electrode materials for aqueous rechargeable lithium batteries". Journal of Solid State Electrochemistry 15, nr 3 (12.06.2010): 431–45. http://dx.doi.org/10.1007/s10008-010-1117-6.
Pełny tekst źródłaShin, Jaeho, i Jang Wook Choi. "Opportunities and Reality of Aqueous Rechargeable Batteries". Advanced Energy Materials 10, nr 28 (5.06.2020): 2001386. http://dx.doi.org/10.1002/aenm.202001386.
Pełny tekst źródłaBin, Duan, Fei Wang, Andebet Gedamu Tamirat, Liumin Suo, Yonggang Wang, Chunsheng Wang i Yongyao Xia. "Progress in Aqueous Rechargeable Sodium-Ion Batteries". Advanced Energy Materials 8, nr 17 (12.03.2018): 1703008. http://dx.doi.org/10.1002/aenm.201703008.
Pełny tekst źródłaZhang, Tao, Nobuyuki Imanishi, Yasuo Takeda i Osamu Yamamoto. "ChemInform Abstract: Aqueous Lithium/Air Rechargeable Batteries". ChemInform 42, nr 44 (6.10.2011): no. http://dx.doi.org/10.1002/chin.201144210.
Pełny tekst źródłaGonzález, J. R., F. Nacimiento, M. Cabello, R. Alcántara, P. Lavela i J. L. Tirado. "Reversible intercalation of aluminium into vanadium pentoxide xerogel for aqueous rechargeable batteries". RSC Advances 6, nr 67 (2016): 62157–64. http://dx.doi.org/10.1039/c6ra11030d.
Pełny tekst źródłaMa, Longtao, Shengmei Chen, Hongfei Li, Zhaoheng Ruan, Zijie Tang, Zhuoxin Liu, Zifeng Wang i in. "Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(iii) rich-electrode". Energy & Environmental Science 11, nr 9 (2018): 2521–30. http://dx.doi.org/10.1039/c8ee01415a.
Pełny tekst źródłaZhu, Qiancheng, Mingyu Cheng, Xianfeng Yang, Bing Zhang, Zhanzi Wan, Qin Xiao i Ying Yu. "Self-supported ultrathin bismuth nanosheets acquired by in situ topotactic transformation of BiOCl as a high performance aqueous anode material". Journal of Materials Chemistry A 7, nr 12 (2019): 6784–92. http://dx.doi.org/10.1039/c8ta11979a.
Pełny tekst źródłaLuo, Zhiqiang, Silin Zheng, Shuo Zhao, Xin Jiao, Zongshuai Gong, Fengshi Cai, Yueqin Duan, Fujun Li i Zhihao Yuan. "High energy density aqueous zinc–benzoquinone batteries enabled by carbon cloth with multiple anchoring effects". Journal of Materials Chemistry A 9, nr 10 (2021): 6131–38. http://dx.doi.org/10.1039/d0ta12127d.
Pełny tekst źródłaMinami, Hironari, Hiroaki Izumi, Takumi Hasegawa, Fan Bai, Daisuke Mori, Sou Taminato, Yasuo Takeda, Osamu Yamamoto i Nobuyuki Imanishi. "Aqueous Lithium--Air Batteries with High Power Density at Room Temperature under Air Atmosphere". Journal of Energy and Power Technology 03, nr 03 (30.06.2021): 1. http://dx.doi.org/10.21926/jept.2103041.
Pełny tekst źródłaChen, Peng, Yutong Wu, Yamin Zhang, Tzu-Ho Wu, Yao Ma, Chloe Pelkowski, Haochen Yang, Yi Zhang, Xianwei Hu i Nian Liu. "A deeply rechargeable zinc anode with pomegranate-inspired nanostructure for high-energy aqueous batteries". Journal of Materials Chemistry A 6, nr 44 (2018): 21933–40. http://dx.doi.org/10.1039/c8ta07809b.
Pełny tekst źródłaKulkarni, Pranav, Debasis Ghosh i R. Geetha Balakrishna. "Recent progress in ‘water-in-salt’ and ‘water-in-salt’-hybrid-electrolyte-based high voltage rechargeable batteries". Sustainable Energy & Fuels 5, nr 6 (2021): 1619–54. http://dx.doi.org/10.1039/d0se01313g.
Pełny tekst źródłaPark, Sodam, Imanuel Kristanto, Gwan Yeong Jung, David B. Ahn, Kihun Jeong, Sang Kyu Kwak i Sang-Young Lee. "A single-ion conducting covalent organic framework for aqueous rechargeable Zn-ion batteries". Chemical Science 11, nr 43 (2020): 11692–98. http://dx.doi.org/10.1039/d0sc02785e.
Pełny tekst źródłaDuan, Wenyuan, Mubashir Husain, Yanlin Li, Najeeb ur Rehman Lashari, Yuhuan Yang, Cheng Ma, Yuzhen Zhao i Xiaorui Li. "Enhanced charge transport properties of an LFP/C/graphite composite as a cathode material for aqueous rechargeable lithium batteries". RSC Advances 13, nr 36 (2023): 25327–33. http://dx.doi.org/10.1039/d3ra04143c.
Pełny tekst źródłaWang, Xiao, Baojuan Xi, Zhenyu Feng, Weihua Chen, Haibo Li, Yuxi Jia, Jinkui Feng, Yitai Qian i Shenglin Xiong. "Layered (NH4)2V6O16·1.5H2O nanobelts as a high-performance cathode for aqueous zinc-ion batteries". Journal of Materials Chemistry A 7, nr 32 (2019): 19130–39. http://dx.doi.org/10.1039/c9ta05922a.
Pełny tekst źródłaLu, Changyu, Tuan K. A. Hoang, The Nam Long Doan, Hongbin Zhao, Ran Pan, Li Yang, Weisheng Guan i P. Chen. "Rechargeable hybrid aqueous batteries using silica nanoparticle doped aqueous electrolytes". Applied Energy 170 (maj 2016): 58–64. http://dx.doi.org/10.1016/j.apenergy.2016.02.117.
Pełny tekst źródłaShiga, Tohru, Yuichi Kato i Yoko Hase. "Coupling of nitroxyl radical as an electrochemical charging catalyst and ionic liquid for calcium plating/stripping toward a rechargeable calcium–oxygen battery". Journal of Materials Chemistry A 5, nr 25 (2017): 13212–19. http://dx.doi.org/10.1039/c7ta03422a.
Pełny tekst źródłaPan, Wending, Yifei Wang, Yingguang Zhang, Holly Yu Ho Kwok, Muyan Wu, Xiaolong Zhao i Dennis Y. C. Leung. "A low-cost and dendrite-free rechargeable aluminium-ion battery with superior performance". Journal of Materials Chemistry A 7, nr 29 (2019): 17420–25. http://dx.doi.org/10.1039/c9ta05207k.
Pełny tekst źródłaVerma, Vivek, Sonal Kumar, William Manalastas i Madhavi Srinivasan. "Undesired Reactions in Aqueous Rechargeable Zinc Ion Batteries". ACS Energy Letters 6, nr 5 (13.04.2021): 1773–85. http://dx.doi.org/10.1021/acsenergylett.1c00393.
Pełny tekst źródłaWainwright, David, i Jeffery Dahn. "Safer Rechargeable Lithium Ion Batteries Use Aqueous ElectroIyte". Materials Technology 11, nr 1 (styczeń 1996): 9–12. http://dx.doi.org/10.1080/10667857.1996.11752650.
Pełny tekst źródłaLi, Leilei, Long Chen, Yuehua Wen, Tengfei Xiong, Hong Xu, Wenfeng Zhang, Gaoping Cao, Yusheng Yang, Liqiang Mai i Hao Zhang. "Phenazine anodes for ultralongcycle-life aqueous rechargeable batteries". Journal of Materials Chemistry A 8, nr 48 (2020): 26013–22. http://dx.doi.org/10.1039/d0ta08600b.
Pełny tekst źródła