Spis treści
Gotowa bibliografia na temat „Apprentissage automatique continu et distribué”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Apprentissage automatique continu et distribué”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Rozprawy doktorskie na temat "Apprentissage automatique continu et distribué"
Ngo, Ha Nhi. "Apprentissage continu et prédiction coopérative basés sur les systèmes de multi-agents adaptatifs appliqués à la prévision de la dynamique du trafic". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES043.
Pełny tekst źródłaLe développement rapide des technologies matérielles, logicielles et de communication des systèmes de transport ont apporté des opportunités prometteuses et aussi des défis importants pour la société humaine. Parallèlement à l'amélioration de la qualité des transports, l'augmentation du nombre de véhicules a entraîné de fréquents embouteillages, en particulier dans les grandes villes aux heures de pointe. Les embouteillages ont de nombreuses conséquences sur le coût économique, l'environnement, la santé mentale des conducteurs et la sécurité routière. Il est donc important de prévoir la dynamique du trafic et d'anticiper l'apparition des embouteillages, afin de prévenir et d'atténuer les situations de trafic perturbées, ainsi que les collisions dangereuses à la fin de la queue d'un embouteillage. De nos jours, les technologies innovatives des systèmes de transport intelligents ont apporté des ensembles de données diverses et à grande échelle sur le trafic qui sont continuellement collectées et transférées entre les dispositifs sous forme de flux de données en temps réel. Par conséquent, de nombreux services de systèmes de transport intelligents ont été développés basé sur l'analyse de données massives, y compris la prévision du trafic. Cependant, le trafic contient de nombreux facteurs variés et imprévisibles qui rendent la modélisation, l'analyse et l'apprentissage de l'évolution historique du trafic difficiles. Le système que nous proposons vise donc à remplir les cinq composantes suivantes d'un système de prévision du trafic : textbf{analyse temporelle, analyse spatiale, interprétabilité, analyse de flux et adaptabilité à plusieurs échelles de données} pour capturer les patterns historiques de trafic à partir des flux de données, fournir une explication explicite de la causalité entrée-sortie et permettre différentes applications avec divers scénarios. Pour atteindre les objectifs mentionnés, nous proposons un modèle d'agent basé sur le clustering dynamique et la théorie des systèmes multi-agents adaptatifs afin de fournir des mécanismes d'apprentissage continu et de prédiction coopérative. Le modèle d'agent proposé comprend deux processus interdépendants fonctionnant en parallèle : textbf{apprentissage local continu} et textbf{prédiction coopérative}. Le processus d'apprentissage vise à détecter, au niveau de l'agent, différents états représentatifs à partir des flux de données reçus. Basé sur le clustering dynamique, ce processus permet la mise à jour continue de la base de données d'apprentissage en s'adaptant aux nouvelles données. Simultanément, le processus de prédiction exploite la base de données apprise, dans le but d'estimer les futurs états potentiels pouvant être observés. Ce processus prend en compte l'analyse de la dépendance spatiale en intégrant la coopération entre les agents et leur voisinage. Les interactions entre les agents sont conçues sur la base de la théorie AMAS avec un ensemble de mécanismes d'auto-adaptation comprenant textbf{l'auto-organisation}, textbf{l'autocorrection} et textbf{l'auto-évolution}, permettant au système d'éviter les perturbations, de gérer la qualité de la prédiction et de prendre en compte les nouvelles informations apprises dans le calcul de la prédiction. Les expériences menées dans le contexte de la prévision de la dynamique du trafic évaluent le système sur des ensembles de données générées et réelles à différentes échelles et dans différents scénarios. Les résultats obtenus ont montré la meilleure performance de notre proposition par rapport aux méthodes existantes lorsque les données de trafic expriment de fortes variations. En outre, les mêmes conclusions retirées de différents cas d'étude renforcent la capacité du système à s'adapter à des applications multi-échelles
Joshi, Bikash. "Algorithmes d'apprentissage pour les grandes masses de données : Application à la classification multi-classes et à l'optimisation distribuée asynchrone". Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM046/document.
Pełny tekst źródłaThis thesis focuses on developing scalable algorithms for large scale machine learning. In this work, we present two perspectives to handle large data. First, we consider the problem of large-scale multiclass classification. We introduce the task of multiclass classification and the challenge of classifying with a large number of classes. To alleviate these challenges, we propose an algorithm which reduces the original multiclass problem to an equivalent binary one. Based on this reduction technique, we introduce a scalable method to tackle the multiclass classification problem for very large number of classes and perform detailed theoretical and empirical analyses.In the second part, we discuss the problem of distributed machine learning. In this domain, we introduce an asynchronous framework for performing distributed optimization. We present application of the proposed asynchronous framework on two popular domains: matrix factorization for large-scale recommender systems and large-scale binary classification. In the case of matrix factorization, we perform Stochastic Gradient Descent (SGD) in an asynchronous distributed manner. Whereas, in the case of large-scale binary classification we use a variant of SGD which uses variance reduction technique, SVRG as our optimization algorithm
Mazac, Sébastien. "Approche décentralisée de l'apprentissage constructiviste et modélisation multi-agent du problème d'amorçage de l'apprentissage sensorimoteur en environnement continu : application à l'intelligence ambiante". Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10147/document.
Pełny tekst źródłaThe theory of cognitive development from Jean Piaget (1923) is a constructivist perspective of learning that has substantially influenced cognitive science domain. Within AI, lots of works have tried to take inspiration from this paradigm since the beginning of the discipline. Indeed it seems that constructivism is a possible trail in order to overcome the limitations of classical techniques stemming from cognitivism or connectionism and create autonomous agents, fitted with strong adaptation ability within their environment, modelled on biological organisms. Potential applications concern intelligent agents in interaction with a complex environment, with objectives that cannot be predefined. Like robotics, Ambient Intelligence (AmI) is a rich and ambitious paradigm that represents a high complexity challenge for AI. In particular, as a part of constructivist theory, the agent has to build a representation of the world that relies on the learning of sensori-motor patterns starting from its own experience only. This step is difficult to set up for systems in continuous environments, using raw data from sensors without a priori modelling.With the use of multi-agent systems, we investigate the development of new techniques in order to adapt constructivist approach of learning on actual cases. Therefore, we use ambient intelligence as a reference domain for the application of our approach
Foulon, Lucas. "Détection d'anomalies dans les flux de données par structure d'indexation et approximation : Application à l'analyse en continu des flux de messages du système d'information de la SNCF". Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI082.
Pełny tekst źródłaIn this thesis, we propose methods to approximate an anomaly score in order to detect abnormal parts in data streams. Two main problems are considered in this context. Firstly, the handling of the high dimensionality of the objects describing the time series extracted from the raw streams, and secondly, the low computation cost required to perform the analysis on-the-fly. To tackle the curse of dimensionality, we have selected the CFOF anomaly score, that has been proposed recently and proven to be robust to the increase of the dimensionality. Our main contribution is then the proposition of two methods to quickly approximate the CFOF score of new objects in a stream. The first one is based on safe pruning and approximation during the exploration of object neighbourhood. The second one is an approximation obtained by the aggregation of scores computed in several subspaces. Both contributions complete each other and can be combined. We show on a reference benchmark that our proposals result in important reduction of the execution times, while providing approximations that preserve the quality of anomaly detection. Then, we present our application of these approaches within the SNCF information system. In this context, we have extended the existing monitoring modules by a new tool to help to detect abnormal behaviours in the real stream of messages within the SNCF communication system
Morette, Nathalie. "Mesure et analyse par apprentissage artificiel des décharges partielles sous haute tension continue pour la reconnaissance de l'état de dégradation des isolants électriques". Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS006.
Pełny tekst źródłaPartial discharges (PD) are one of the key drivers of degradation and ageing of insulating materials used in high-voltage switchgear. Consequently, partial discharges measurement has become an essential assessment tool for the monitoring of insulation systems. Given the continuing growth of renewable energy, the transport under direct current (DC) is economically advantageous. However, the relationship between partial discharges characteristics and the degradation of cables insulation under high voltage direct current (HVDC) remains unclear. In this work, a methodology is proposed for ageing state recognition of electrical insulation systems based on PD measurements under DC. For this purpose, original measuring devices have been developed and PD measurements were performed within different cable types under HVDC. In order to ensure a reliable monitoring and diagnosis of the insulation, noise signals must be eliminated. This thesis tackles the problem of the discrimination of partial discharge and noise signals acquired in different environments by applying machine learning methods. The techniques developed are a promising tool to improve the diagnosis of HV equipment under HVDC, where the need to discard automatically noise signals with high accuracy is of great importance. Once disturbances were eliminated from the databases, ageing state recognition was performed on different cable types. The feature extraction, ranking and selection methods, combined with classification techniques allowed to obtain recognition rates up to 100%
Jankee, Christopher. "Optimisation par métaheuristique adaptative distribuée en environnement de calcul parallèle". Thesis, Littoral, 2018. http://www.theses.fr/2018DUNK0480/document.
Pełny tekst źródłaTo solve discrete optimization problems of black box type, many stochastic algorithms such as evolutionary algorithms or metaheuristics exist and prove to be particularly effective according to the problem to be solved. Depending on the observed properties of the problem, choosing the most relevant algorithm is a difficult problem. In the original framework of parallel and distributed computing environments, we propose and analyze different adaptive optimization algorithm selection strategies. These selection strategies are based on reinforcement learning methods automatic, from the field of artificial intelligence, and on information sharing between computing nodes. We compare and analyze selection strategies in different situations. Two types of synchronous distributed computing environment are discussed : the island model and the master-slave model. On the set of nodes synchronously at each iteration, the adaptive selection strategy chooses an algorithm according to the state of the search for the solution. In the first part, two problems OneMax and NK, one unimodal and the other multimodal, are used as benchmarks for this work. Then, to better understand and improve the design of adaptive selection strategies, we propose a modeling of the optimization problem and its local search operator. In this modeling, an important characteristic is the average gain of an operator according to the fitness of the candidate solution. The model is used in the synchronous framework of the master-slave model. A selection strategy is broken down into three main components : the aggregation of the rewards exchanged, the learning scheme and the distribution of the algorithms on the computing nodes. In the final part, we study three scenarios, and we give keys to understanding the relevant use of adaptive selection strategies over naïve strategies. In the framework of the master-slave model, we study the different ways of aggregating the rewards on the master node, the distribution of the optimization algorithms of the nodes of computation and the time of communication. This thesis ends with perspectives in the field of distributed adaptive stochastic optimization
Liu, Li. "Modélisation pour la reconnaissance continue de la langue française parlée complétée à l'aide de méthodes avancées d'apprentissage automatique". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAT057/document.
Pełny tekst źródłaThis PhD thesis deals with the automatic continuous Cued Speech (CS) recognition basedon the images of subjects without marking any artificial landmark. In order to realize thisobjective, we extract high level features of three information flows (lips, hand positions andshapes), and find an optimal approach to merging them for a robust CS recognition system.We first introduce a novel and powerful deep learning method based on the ConvolutionalNeural Networks (CNNs) for extracting the hand shape/lips features from raw images. Theadaptive background mixture models (ABMMs) are also applied to obtain the hand positionfeatures for the first time. Meanwhile, based on an advanced machine learning method Modi-fied Constrained Local Neural Fields (CLNF), we propose the Modified CLNF to extract theinner lips parameters (A and B ), as well as another method named adaptive ellipse model. Allthese methods make significant contributions to the feature extraction in CS. Then, due tothe asynchrony problem of three feature flows (i.e., lips, hand shape and hand position) in CS,the fusion of them is a challenging issue. In order to resolve it, we propose several approachesincluding feature-level and model-level fusion strategies combined with the context-dependentHMM. To achieve the CS recognition, we propose three tandem CNNs-HMM architectureswith different fusion types. All these architectures are evaluated on the corpus without anyartifice, and the CS recognition performance confirms the efficiency of our proposed methods.The result is comparable with the state of the art using the corpus with artifices. In parallel,we investigate a specific study about the temporal organization of hand movements in CS,especially about its temporal segmentation, and the evaluations confirm the superior perfor-mance of our methods. In summary, this PhD thesis applies the advanced machine learningmethods to computer vision, and the deep learning methodologies to CS recognition work,which make a significant step to the general automatic conversion problem of CS to sound.The future work will mainly focus on an end-to-end CNN-RNN system which incorporates alanguage model, and an attention mechanism for the multi-modal fusion