Gotowa bibliografia na temat „Application en angiographie”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Application en angiographie”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Application en angiographie"
Vignal, Philippe. "Angiographie par couplage de l’écho 3D au Doppler puissance : 3D-power Doppler angiography (3D-PDA). Application clinique en gynécologie". Imagerie de la Femme 19, nr 3 (wrzesień 2009): 163–70. http://dx.doi.org/10.1016/j.femme.2009.06.004.
Pełny tekst źródłaKrause, Pabst, Kenn i Hahn. "Hochauflösende Kontrastmittel verstärkte MR-Angiographie der Handarterien: erste Erfahrungen". Vasa 31, nr 3 (1.08.2002): 179–84. http://dx.doi.org/10.1024/0301-1526.31.3.179.
Pełny tekst źródłaChiriac, A., B. Iliescu, N. Dobrin i I. Poeată. "Technique possibilities for volumetric assessment of intracranial aneurysms". Romanian Neurosurgery 19, nr 2 (9.11.2012): 96–102. http://dx.doi.org/10.2478/v10282-012-0006-1.
Pełny tekst źródłaSeetharam, Karthik, Ayesha Cheema, Gary Friedman i Roman Pachulski. "Left Bundle Branch Block Chest Pain Conundrum". Case Reports in Cardiology 2020 (20.02.2020): 1–3. http://dx.doi.org/10.1155/2020/2724981.
Pełny tekst źródłaSteger, Bernhard. "Ocular surface angiography: from neovessels to neoplasia". BMJ Open Ophthalmology 6, nr 1 (sierpień 2021): e000829. http://dx.doi.org/10.1136/bmjophth-2021-000829.
Pełny tekst źródłaBenvenuti, Lucia, Salvatore Chibbaro, Stefano Carnesecchi, Flavio Pulerà i Rolando Gagliardi. "Automated Three-dimensional Volume Rendering of Helical Computed Tomographic Angiography for Aneurysms: An Advanced Application of Neuronavigation Technology". Operative Neurosurgery 57, suppl_1 (1.07.2005): 69–77. http://dx.doi.org/10.1227/01.neu.0000163485.56639.7e.
Pełny tekst źródłaCohen, Salomon Y., Alexandra Miere, Sylvia Nghiem-Buffet, Franck Fajnkuchen, Eric H. Souied i Sarah Mrejen. "Clinical applications of optical coherence tomography angiography: What we have learnt in the first 3 years". European Journal of Ophthalmology 28, nr 5 (19.03.2018): 491–502. http://dx.doi.org/10.1177/1120672117753704.
Pełny tekst źródłaNicolaides, Andrew N., Edward G. Shifrin, Andrew Bradbury, Surinder Dhanjil, Maura Griffin, Gianni Belcaro i Michael Williams. "Angiographic and Duplex Grading of Internal Carotid Stenosis: Can We Overcome the Confusion?" Journal of Endovascular Therapy 3, nr 2 (maj 1996): 158–65. http://dx.doi.org/10.1177/152660289600300207.
Pełny tekst źródłaLupidi, Marco, Alessio Cerquaglia, Jay Chhablani, Tito Fiore, Sumit Randhir Singh, Felice Cardillo Piccolino, Roberta Corbucci, Florence Coscas, Gabriel Coscas i Carlo Cagini. "Optical coherence tomography angiography in age-related macular degeneration: The game changer". European Journal of Ophthalmology 28, nr 4 (6.04.2018): 349–57. http://dx.doi.org/10.1177/1120672118766807.
Pełny tekst źródłaBhattacharya, Visweswar, Neeraj K. Agrawal, Gurab R. Chaudhary, Srivastava Arvind i Siddharth Bhattacharya. "CT angiographic evaluation of perforators in the lower limb and their reconstructive implication". Indian Journal of Plastic Surgery 45, nr 03 (wrzesień 2012): 494–97. http://dx.doi.org/10.4103/0970-0358.105959.
Pełny tekst źródłaRozprawy doktorskie na temat "Application en angiographie"
Peerally, Muhammad Saleem. "L'angiographie par résonance magnétique (ARM) : application à la pathologie cérébrale". Saint-Etienne, 1995. http://www.theses.fr/1995STET6422.
Pełny tekst źródłaBousse, Alexandre. "Problèmes inverses, application à la reconstruction compensée en mouvement en angiographie rotationnelle X". Phd thesis, Université Rennes 1, 2008. http://tel.archives-ouvertes.fr/tel-00361396.
Pełny tekst źródłaUne fois le mouvement estimé, la reconstruction tomographique à un instant de référence est effectuée par une optimisation aux moindres-carrés qui inclut le mouvement ainsi qu'un terme de pénalité qui favorise les valeurs d'intensités fortes pour les voxels au voisinage de la ligne centrale 3-D, et les faibles valeurs pour les autres. Cette méthode a été testée sur des données simulées basées sur des lignes centrales 3-D préalablement extraites de données MSCT.
Vermandel, Maximilien. "Mise en correspondance tridimensionnelle d'images multimodales : application aux systèmes d'imageries projective et tomographique d'angiographie cérébrale". Lille 1, 2002. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2002/50376-2002-185.pdf.
Pełny tekst źródłaDuhamel, Guillaume. "Résonance magnétique nucléaire (RMN) in vivo du xénon-129 hyperpolarisé : application à la mesure de la perfusion cérébrale chez le rat". Université Joseph Fourier (Grenoble), 2001. http://www.theses.fr/2001GRE10123.
Pełny tekst źródłaKone, Tiémoman. "Recalage automatique d'images angiographiques rétiniennes par analyse numérique d'images : application au suivi de séquences d'images". Paris 12, 1993. http://www.theses.fr/1993PA120046.
Pełny tekst źródłaBonnet, Stéphane. "Approches multi résolution en reconstruction tomographique 3D : Application à l'angiographie cérébrale". Lyon, INSA, 2000. http://www.theses.fr/2000ISAL0077.
Pełny tekst źródła3D rotational angiography (RA) is raising increasing interest for diagnostic in the field of endovascular treatment of intracranial Aneurysms. It brings to the physician valuable 3d information of the cerebral vascular 3D reconstruction of arterial vessels is Obtained via a cone-beam reconstruction algorithm applied onto a set of contrast-enhanced x-ray images. This thesis suggests new Tomographic reconstruction methods in order to access directly the Representation of a 3d object at different resolutions from its projections. The underlying idea is to apply image processing techniques in this intermediate space to increase both image quality and Computation time. In a first step, the natural relationship between wavelets and Computerized tomography is investigated for parallel beam geometry. It provides a rigorous mathematical framework where multiresolution Analysis can be considered. We present an original tomography Reconstruction algorithm satisfying either separable or quincunx Wavelet schemes. It has been validated on experimental data, acquired Using synchrotron radiation at the ESRF, Grenoble. The generalization of these reconstruction methods for divergent geometries (2d-3d) is then studied. The main difficulty consists in the direct computation of the radon transform from a divergent data set. Nevertheless, we propose an approximate multiresolution algorithm that makes full use of the particular acquisition geometry in 3D RA and of the special Choice of non separable wavelets. Simulations on mathematical phantoms allowed validating our algorithm and fixing its conditions of Use. Lastly, these multiresolution techniques were successfully applied to 3D rotational angiography. The feasibility of our Reconstruction method w as shown on clinical data, acquired at the Neurological hospital in Lyon. A fast low-resolution reconstruction of the 3D arterial vessels with the progressive addition of details in a Region of interest w as demonstrated
Saïb, Gaël. "Conception d'impulsions radiofréquence en transmission parallèle pour la sélection homogène de tranches et leur application à l'angiographie en temps de vol du cerveau humain en IRM à 7 Tesla". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS163.
Pełny tekst źródłaUltra-high field (UHF) MRI allows submillimetric spatial resolution in order to depict finer structures compared to conventional MRI. In recent years, the UHF potential has been explored in laboratories such as NeuroSpin, at Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), to study brain anatomy and function at a mesoscopic scale. However, for high magnetic field strengths (> 3 Tesla), the radiofrequency (RF) field required to excite the water protons has a wavelength shorter than the size of the human head, causing destructive interferences in the brain. These increase with the static field strength leading to signal or contrast inhomogeneity artefacts on brain images, hindering the UHF benefits. However, failing to homogenize the RF field produced in the brain does not preclude from homogenizing the spin excitation to improve image quality and perform better clinical diagnosis. For this purpose, NeuroSpin’s 7T scanner has been equipped with an 8-channel parallel transmission system allowing to transmit independent optimized RF shapes on each channel in order to better control RF field interferences than in conventional single transmit channel. This thesis work focuses on RF pulse design strategies using parallel transmission to select slabs uniformly and on their applications to magnetic resonance angiography (MRA) of the human brain at 7T. In the UHF context, the most common method to homogenize the magnetization flip angle in a slice consists in combining several consecutive optimized selective excitations, so-called “spokes” subpulses, in different locations of the plane transverse to the slice in transmit k-space. Even though this method succeeds in homogenizing the in-plane excitation, its performance is not optimal in large slabs because through-slab RF inhomogeneities are not taken into account. In a first step, two original selective pulse design methods are introduced and explored to homogenize large slab selections: the “kT-spoke” method which optimizes the spoke placements in the three dimensions of the transmit k-space, and the “3D spokes” which consist in optimizing the RF subpulses point by point in time. These methods have been successfully validated in phantoms at 7T and surpassed the state of the art performance in terms of flip angle homogeneity in large slab selections. In a second step, these methods are applied to 3D Time-Of-Flight (TOF) MR angiography to improve the visualization of the arterial network in the human brain at 7T. As most MRI sequences, TOF is particularly sensitive to RF field heterogeneities. Moreover, for large uniform slab excitation, blood saturation effects prevent the depiction of the arterial network before slab exit. To correct for these effects, ramp RF pulses are proposed in the state-of-the-art, generating ascending flip angle profiles through the slab. The RF pulse design methods developed hereby were adapted to generate these profiles, successfully compensating blood saturation in 7T acquisitions. This work paves the way to a new clinical application at NeuroSpin, where MR angiography had not been explored yet, despite the high benefit of UHF for this modality. In addition, the methods developed hereby were also adapted for simultaneous multi-slice excitations. This allows promising perspectives to accelerate acquisitions and push further away the limits of TOF angiography in terms of spatial resolution
Ben, Sbeh Zakaria. "Une nouvelle méthode de segmentation en morphologie mathématique basée sur la reconstitution géodésique : application à l'extraction de drusen en imagerie d'angiographie numérisée d'ophtalmologie". Paris 9, 1998. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1998PA090023.
Pełny tekst źródłaThai, Cao Tan. "Angioanatomie IRM et TDM des artères à destinée péniennes et clitoridiennes : application au cancer de la prostate et en chirurgie vasculaire". Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0114.
Pełny tekst źródłaErectile dysfunction is one of the types of sexual dysfunction, the etiology is complex in male and female. It involves venogenic factor, arteriogenic and neural origins. The aetiology of changes in sexual potency after radical prostatectomy and pelvic vascular surgery or pelvic radiotherapy is probably multifactorial, one of these cause is injury the penile artery (male) and clitoris artery (female) during the operation or radiotherapy. The anatomy of the penile and clitoral artery is variation. Magnetic resonance (MR) and Multiple detector computed tomography (MDCT) angiography give us a very sharp image, they can be pre-intervation used to identify and localize internal pudendal artery (IPA) and accessory pudendal artery (APA), and may help surgeons and radiotherapists plan an effective intervation that preserves IPA and APA possibly important for sexual function after surgery or radiotherapy of the pelvic organs
Coste, Eric. "Reconstruction d'une arborescence spatiale à partir d'un nombre minimal de projections : application à l'angiographie numérisée". Lille 1, 1996. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/1996/50376-1996-204.pdf.
Pełny tekst źródłaKsiążki na temat "Application en angiographie"
Fluorescein angiography: Technique, interpretation, and application. Oxford: Oxford University Press, 1991.
Znajdź pełny tekst źródłaJ, Carroll Timothy, i SpringerLink (Online service), red. Magnetic Resonance Angiography: Principles and Applications. New York, NY: Springer Science+Business Media, LLC, 2012.
Znajdź pełny tekst źródłaFedorov, S. N. Fluorescein angiography of the eye: Applications in ophthalmosurgery. Moscow: Mir Publishers, 1992.
Znajdź pełny tekst źródłaToro, Javier G. Direct and indirect parametric multiple motion estimation in image sequences and their application in layer-based angiographic image compression. [s.l: The Author], 2000.
Znajdź pełny tekst źródłaG, Wasserman Alan, i Ross Allan M, red. Cardiac application of digital angiography. Mount Kisco, N.Y: Futura Pub. Co., 1989.
Znajdź pełny tekst źródła1932-, Potchen E. James, red. Magnetic resonance angiography: Concepts & applications. St. Louis: Mosby-Year Book, 1993.
Znajdź pełny tekst źródłaE. James, M.D. Potchen. Magnetic Resonance Angiography: Concepts & Applications. Mosby Elsevier Health Science, 1993.
Znajdź pełny tekst źródła(Editor), G. Schneider, M. R. Prince (Editor), J.F.M. Meaney (Editor), V. B. Ho (Editor) i E. J. Potchen (Preface), red. Magnetic Resonance Angiography: Techniques, Indications and Practical Applications. Springer, 2005.
Znajdź pełny tekst źródłaRemondino, Fabio, i Mark Shortis. Videometrics, Range Imaging, and Applications XIV. SPIE, 2017.
Znajdź pełny tekst źródłaJohn, Mancini G. B., red. Clinical applications of cardiac digital angiography. New York: Raven Press, 1988.
Znajdź pełny tekst źródłaCzęści książek na temat "Application en angiographie"
Weiss, Clifford R., Aravindan Kolandaivelu, Jeff Bulte i Aravind Arepally. "Emerging Interventional MR Applications". W Magnetic Resonance Angiography, 395–401. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-1686-0_29.
Pełny tekst źródłaMukherjee, Sugoto, i Max Wintermark. "Carotid and Vertebral Circulation: Clinical Applications". W Magnetic Resonance Angiography, 225–37. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-1686-0_17.
Pełny tekst źródłaJagadeesan, Bharathi D., i David N. Loy. "Pediatric MR Angiography: Principles and Applications". W Magnetic Resonance Angiography, 365–79. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-1686-0_26.
Pełny tekst źródłaDavarpanah, Amir H., Philip Hodnett, Jeremy D. Collins, James C. Carr i Tim Scanlon. "Venous Imaging: Techniques, Protocols, and Clinical Applications". W Magnetic Resonance Angiography, 351–64. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-1686-0_25.
Pełny tekst źródłaPelberg, Robert. "Specific Applications of Cardiac Computed Tomographic Angiography". W Cardiac CT Angiography Manual, 191–286. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6690-0_9.
Pełny tekst źródłaVogl, Thomas J. "Clinical Application of Magnetic Resonance Angiography". W MRI of the Head and Neck, 233–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76790-6_15.
Pełny tekst źródłaMaffei, Erica, Chiara Martini i Filippo Cademartiri. "CT and CT Angiography — Basics". W Clinical Applications of Cardiac CT, 219–26. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2522-6_21.
Pełny tekst źródłaMuehrcke, Derek. "Angiography During Cardiovascular Surgery". W Video Atlas of Intraoperative Applications of Near Infrared Fluorescence Imaging, 55–67. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38092-2_7.
Pełny tekst źródłaChung, Jin Wook, i Jae Hyung Park. "Clinical Applications of Spiral Computed Tomography Angiography". W Computed Tomography, 220–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-79887-0_28.
Pełny tekst źródłaSerruys, Patrick W., Edward S. Murphy i Nico H. J. Pijls. "Application of coronary flow measurements to decision making in angioplasty". W Quantitative Coronary Angiography in Clinical Practice, 181–230. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8358-9_12.
Pełny tekst źródłaStreszczenia konferencji na temat "Application en angiographie"
Ning, Ruola, i Robert A. Kruger. "Image-intensifier-based volume CT imager: angiographic application". W Medical Imaging '90, Newport Beach, 4-9 Feb 90, redaktor Murray H. Loew. SPIE, 1990. http://dx.doi.org/10.1117/12.18929.
Pełny tekst źródłaBones, Philip J., Bahareh Vafadar, Richard Watts i Bing Wu. "Imposing spatio-temporal support in magnetic resonance angiographic imaging". W SPIE Optical Engineering + Applications, redaktorzy Philip J. Bones, Michael A. Fiddy i Rick P. Millane. SPIE, 2010. http://dx.doi.org/10.1117/12.861059.
Pełny tekst źródłaOrlova, Anna G., Marina Sirotkina, Ekaterina Smolina, Vadim Elagin, Ilya Turchin i Pavel Subochev. "Optoacoustic angiography of experimental tumors". W Opto-Acoustic Methods and Applications in Biophotonics, redaktorzy Vasilis Ntziachristos i Roger Zemp. SPIE, 2019. http://dx.doi.org/10.1117/12.2527148.
Pełny tekst źródłaKokubun, Hiroto, Osamu Miyazaki i Hiromitsu Hayashi. "Radial intensity projection for lumen: application to CT angiographic imaging". W Medical Imaging, redaktorzy Michael J. Flynn i Jiang Hsieh. SPIE, 2006. http://dx.doi.org/10.1117/12.651498.
Pełny tekst źródłaManning, Warren J., i Robert Edelman. "Magnetic resonance coronary angiography". W OE/LASE'93: Optics, Electro-Optics, & Laser Applications in Science& Engineering, redaktor Abund O. Wist. SPIE, 1993. http://dx.doi.org/10.1117/12.154959.
Pełny tekst źródłaOrlova, Anna G., Ksenia G. Pavlova, Aleksey A. Kurnikov, Marina A. Sirotkina, Anna V. Maslennikova, Mikhail Y. Kirillin, Dmitriy V. Skamnitsky, Ilya V. Turchin i Pavel V. Subochev. "In vivo applications of raster-scan optoacoustic angiography". W Photons Plus Ultrasound: Imaging and Sensing 2021, redaktorzy Alexander A. Oraevsky i Lihong V. Wang. SPIE, 2021. http://dx.doi.org/10.1117/12.2578206.
Pełny tekst źródłaJin, Zhaoyang, i Yiping P. Du. "Application of partial-echo compressed sensing in MR angiography". W 2012 5th International Conference on Biomedical Engineering and Informatics (BMEI). IEEE, 2012. http://dx.doi.org/10.1109/bmei.2012.6513105.
Pełny tekst źródłaWu, Ye, Stephen Rudin i Daniel R. Bednarek. "A prototype micro-angiographic fluoroscope and its application in animal studies". W Medical Imaging, redaktor Michael J. Flynn. SPIE, 2005. http://dx.doi.org/10.1117/12.589232.
Pełny tekst źródłaFigueiredo, Marisa, Benjamin M. Potsaid, Qin Huang, Hiroshi Mashimo, James G. Fujimoto, Hsiang-Chieh Lee, Kaicheng Liang, Osman O. Ahsen, Zhao Wang i Vijaysekhar Jayaraman. "Endoscopic optical coherence tomography and angiography for gastroenterology applications". W Biomedical Imaging and Sensing Conference, redaktorzy Osamu Matoba, Yasuhiro Awatsuji, Toyohiko Yatagai i Yoshihisa Aizu. SPIE, 2018. http://dx.doi.org/10.1117/12.2323185.
Pełny tekst źródłaQidwai, Uvais, i Umair Qidwai. "Blind Restoration of Fluorescein Angiography Images". W 2010 International Conference on Digital Image Computing: Techniques and Applications (DICTA). IEEE, 2010. http://dx.doi.org/10.1109/dicta.2010.35.
Pełny tekst źródła