Artykuły w czasopismach na temat „Antiviral inhibitors”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Antiviral inhibitors”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Frederickson, Robert. "Antiviral protease inhibitors". Nature Biotechnology 17, nr 12 (grudzień 1999): 1150. http://dx.doi.org/10.1038/70677.
Pełny tekst źródłaWang, Q. May, Robert B. Johnson, Louis N. Jungheim, Jeffrey D. Cohen i Elcira C. Villarreal. "Dual Inhibition of Human Rhinovirus 2A and 3C Proteases by Homophthalimides". Antimicrobial Agents and Chemotherapy 42, nr 4 (1.04.1998): 916–20. http://dx.doi.org/10.1128/aac.42.4.916.
Pełny tekst źródłaMello, Chris, Esmeralda Aguayo, Madeleine Rodriguez, Gary Lee, Robert Jordan, Tomas Cihlar i Gabriel Birkus. "Multiple Classes of Antiviral Agents ExhibitIn VitroActivity against Human Rhinovirus Type C". Antimicrobial Agents and Chemotherapy 58, nr 3 (23.12.2013): 1546–55. http://dx.doi.org/10.1128/aac.01746-13.
Pełny tekst źródłaVinson, Valda. "Promising antiviral protease inhibitors". Science 368, nr 6497 (18.06.2020): 1324.2–1324. http://dx.doi.org/10.1126/science.368.6497.1324-b.
Pełny tekst źródłaMorales Vasquez, Desarey, Jun-Gyu Park, Ginés Ávila-Pérez, Aitor Nogales, Juan Carlos de la Torre, Fernando Almazan i Luis Martinez-Sobrido. "Identification of Inhibitors of ZIKV Replication". Viruses 12, nr 9 (18.09.2020): 1041. http://dx.doi.org/10.3390/v12091041.
Pełny tekst źródłaSepúlveda, Claudia Soledad, Cybele Carina García i Elsa Beatriz Damonte. "Inhibitors of Nucleotide Biosynthesis as Candidates for a Wide Spectrum of Antiviral Chemotherapy". Microorganisms 10, nr 8 (12.08.2022): 1631. http://dx.doi.org/10.3390/microorganisms10081631.
Pełny tekst źródłaDe Nicolò, Amedeo, Marco Simiele, Andrea Calcagno, Adnan Mohamed Abdi, Stefano Bonora, Giovanni Di Perri i Antonio D'Avolio. "Intracellular Antiviral Activity of Low-Dose Ritonavir in Boosted Protease Inhibitor Regimens". Antimicrobial Agents and Chemotherapy 58, nr 7 (5.05.2014): 4042–47. http://dx.doi.org/10.1128/aac.00104-14.
Pełny tekst źródłaHolý, Antonín, Ivan Votruba i Erik De Clercq. "Structure-activity studies on open-chain analogues of nucleosides: Inhibition of S-adenosyl-L-homocysteine hydrolase and antiviral activity 1. Neutral open-chain analogues". Collection of Czechoslovak Chemical Communications 50, nr 1 (1985): 245–61. http://dx.doi.org/10.1135/cccc19850245.
Pełny tekst źródłaHewajuli, Dyah Ayu, i NLPI Dharmayanti. "Efficacy, Mechanism and Antiviral Resistance of Neuraminidase Inhibitors and Adamantane against Avian Influenza". Indonesian Bulletin of Animal and Veterinary Sciences 29, nr 2 (4.12.2019): 61. http://dx.doi.org/10.14334/wartazoa.v29i2.1951.
Pełny tekst źródłaHayden, Frederick G. "Perspectives on antiviral use during pandemic influenza". Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 356, nr 1416 (29.12.2001): 1877–84. http://dx.doi.org/10.1098/rstb.2001.1007.
Pełny tekst źródłaCanal, Berta, Allison W. McClure, Joseph F. Curran, Mary Wu, Rachel Ulferts, Florian Weissmann, Jingkun Zeng i in. "Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp14/nsp10 exoribonuclease". Biochemical Journal 478, nr 13 (2.07.2021): 2445–64. http://dx.doi.org/10.1042/bcj20210198.
Pełny tekst źródłaKoban, Robert, Markus Neumann, Philipp P. Nelson i Heinz Ellerbrok. "Differential Efficacy of Novel Antiviral Substances in 3D and Monolayer Cell Culture". Viruses 12, nr 11 (12.11.2020): 1294. http://dx.doi.org/10.3390/v12111294.
Pełny tekst źródłaÁlvarez-Fernández, Hadrián, Patricia Mingo-Casas, Ana-Belén Blázquez, Flavia Caridi, Juan Carlos Saiz, María-Jesús Pérez-Pérez, Miguel A. Martín-Acebes i Eva-María Priego. "Allosteric Inhibition of Neutral Sphingomyelinase 2 (nSMase2) by DPTIP: From Antiflaviviral Activity to Deciphering Its Binding Site through In Silico Studies and Experimental Validation". International Journal of Molecular Sciences 23, nr 22 (11.11.2022): 13935. http://dx.doi.org/10.3390/ijms232213935.
Pełny tekst źródłaEltahla, Auda A., Kun Lee Lim, John-Sebastian Eden, Andrew G. Kelly, Jason M. Mackenzie i Peter A. White. "Nonnucleoside Inhibitors of Norovirus RNA Polymerase: Scaffolds for Rational Drug Design". Antimicrobial Agents and Chemotherapy 58, nr 6 (17.03.2014): 3115–23. http://dx.doi.org/10.1128/aac.02799-13.
Pełny tekst źródłaAsahchop, Eugene L., Mark A. Wainberg, Richard D. Sloan i Cécile L. Tremblay. "Antiviral Drug Resistance and the Need for Development of New HIV-1 Reverse Transcriptase Inhibitors". Antimicrobial Agents and Chemotherapy 56, nr 10 (25.06.2012): 5000–5008. http://dx.doi.org/10.1128/aac.00591-12.
Pełny tekst źródłaMa, Ling, Jiajia Wen, Biao Dong, Jinming Zhou, Shangjiu Hu, Juxian Wang, Yucheng Wang, Mei Zhu i Shan Cen. "Design and Evaluation of Novel HIV-1 Protease Inhibitors Containing Phenols or Polyphenols as P2 Ligands with High Activity against DRV-Resistant HIV-1 Variants". International Journal of Molecular Sciences 23, nr 22 (16.11.2022): 14178. http://dx.doi.org/10.3390/ijms232214178.
Pełny tekst źródłaLangendries, Lana, Rana Abdelnabi, Johan Neyts i Leen Delang. "Repurposing Drugs for Mayaro Virus: Identification of EIDD-1931, Favipiravir and Suramin as Mayaro Virus Inhibitors". Microorganisms 9, nr 4 (31.03.2021): 734. http://dx.doi.org/10.3390/microorganisms9040734.
Pełny tekst źródłaSacco, Michael Dominic, Chunlong Ma, Panagiotis Lagarias, Ang Gao, Julia Alma Townsend, Xiangzhi Meng, Peter Dube i in. "Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against Mpro and cathepsin L". Science Advances 6, nr 50 (6.11.2020): eabe0751. http://dx.doi.org/10.1126/sciadv.abe0751.
Pełny tekst źródłaGudima, Georgii, Ilya Kofiadi, Igor Shilovskiy, Dmitry Kudlay i Musa Khaitov. "Antiviral Therapy of COVID-19". International Journal of Molecular Sciences 24, nr 10 (16.05.2023): 8867. http://dx.doi.org/10.3390/ijms24108867.
Pełny tekst źródłaPatick, A. K., i K. E. Potts. "Protease Inhibitors as Antiviral Agents". Clinical Microbiology Reviews 11, nr 4 (1.10.1998): 614–27. http://dx.doi.org/10.1128/cmr.11.4.614.
Pełny tekst źródłaAlymova, I., G. Taylor i A. Portner. "Neuraminidase Inhibitors as Antiviral Agents". Current Drug Target -Infectious Disorders 5, nr 4 (1.12.2005): 401–9. http://dx.doi.org/10.2174/156800505774912884.
Pełny tekst źródłaPeel, Michael, i Andrew Scribner. "Cyclophilin inhibitors as antiviral agents". Bioorganic & Medicinal Chemistry Letters 23, nr 16 (sierpień 2013): 4485–92. http://dx.doi.org/10.1016/j.bmcl.2013.05.101.
Pełny tekst źródłaLee, Wei-Ping, Keng-Li Lan, Shi-Xian Liao, Yi-Hsiang Huang, Ming-Chih Hou i Keng-Hsin Lan. "Inhibitory Effects of Amentoflavone and Orobol on Daclatasvir-Induced Resistance-Associated Variants of Hepatitis C Virus". American Journal of Chinese Medicine 46, nr 04 (styczeń 2018): 835–52. http://dx.doi.org/10.1142/s0192415x18500441.
Pełny tekst źródłaMilligan, Jennifer C., Theresa U. Zeisner, George Papageorgiou, Dhira Joshi, Christelle Soudy, Rachel Ulferts, Mary Wu i in. "Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp5 main protease". Biochemical Journal 478, nr 13 (2.07.2021): 2499–515. http://dx.doi.org/10.1042/bcj20210197.
Pełny tekst źródłaMcFadden, Karyn, Patricia Fletcher, Fiorella Rossi, Kantharaju, Muddagowda Umashankara, Vanessa Pirrone, Srivats Rajagopal i in. "Antiviral Breadth and Combination Potential of Peptide Triazole HIV-1 Entry Inhibitors". Antimicrobial Agents and Chemotherapy 56, nr 2 (14.11.2011): 1073–80. http://dx.doi.org/10.1128/aac.05555-11.
Pełny tekst źródłaWulandari, Dwi, i T. Mirawati Sudiro. "PENGEMBANGAN ANTIVIRUS HUMAN PAPILLOMA VIRUS BERBASIS MOLEKUL KECIL". Majalah Kedokteran Andalas 37, nr 1 (3.05.2015): 58. http://dx.doi.org/10.22338/mka.v37.i1.p58-63.2014.
Pełny tekst źródłaIshii, H., M. Hasobe, J. G. McKee, D. B. Ault-Riché i R. T. Borchardt. "Synergistic Antiviral Activity of Inhibitors of S-Adenosylhomocysteine Hydrolase and Ribavirin". Antiviral Chemistry and Chemotherapy 4, nr 2 (kwiecień 1993): 127–30. http://dx.doi.org/10.1177/095632029300400207.
Pełny tekst źródłaTremblay, Cécile L., Françoise Giguel, Christopher Kollmann, Yongbiao Guan, Ting-Chao Chou, Bahige M. Baroudy i Martin S. Hirsch. "Anti-Human Immunodeficiency Virus Interactions of SCH-C (SCH 351125), a CCR5 Antagonist, with Other Antiretroviral Agents In Vitro". Antimicrobial Agents and Chemotherapy 46, nr 5 (maj 2002): 1336–39. http://dx.doi.org/10.1128/aac.46.5.1336-1339.2002.
Pełny tekst źródłaGanter, Benedikt, Martin Zickler, Johanna Huchting, Matthias Winkler, Anna Lüttjohann, Chris Meier, Gülsah Gabriel i Sebastian Beck. "T-705-Derived Prodrugs Show High Antiviral Efficacies against a Broad Range of Influenza A Viruses with Synergistic Effects When Combined with Oseltamivir". Pharmaceutics 15, nr 6 (14.06.2023): 1732. http://dx.doi.org/10.3390/pharmaceutics15061732.
Pełny tekst źródłaMathy, Joanna E., Sue Ma, Teresa Compton i Kai Lin. "Combinations of Cyclophilin Inhibitor NIM811 with Hepatitis C Virus NS3-4A Protease or NS5B Polymerase Inhibitors Enhance Antiviral Activity and Suppress the Emergence of Resistance". Antimicrobial Agents and Chemotherapy 52, nr 9 (30.06.2008): 3267–75. http://dx.doi.org/10.1128/aac.00498-08.
Pełny tekst źródłaSumalapao, Derick Erl P. "Elucidation on the Physicochemical Properties of Potential and Clinically Approved Antiviral Drugs: A Search for Effective Therapies against SARS-CoV-2 Infection". Journal of Pure and Applied Microbiology 14, suppl 1 (22.05.2020): 1025–34. http://dx.doi.org/10.22207/jpam.14.spl1.41.
Pełny tekst źródłaRocha-Pereira, J., M. S. J. Nascimento, Q. Ma, R. Hilgenfeld, J. Neyts i D. Jochmans. "The Enterovirus Protease Inhibitor Rupintrivir Exerts Cross-Genotypic Anti-Norovirus Activity and Clears Cells from the Norovirus Replicon". Antimicrobial Agents and Chemotherapy 58, nr 8 (2.06.2014): 4675–81. http://dx.doi.org/10.1128/aac.02546-13.
Pełny tekst źródłaKausar, Shamaila, Fahad Said Khan, Muhammad Ishaq Mujeeb Ur Rehman, Muhammad Akram, Muhammad Riaz, Ghulam Rasool, Abdul Hamid Khan, Iqra Saleem, Saba Shamim i Arif Malik. "A review: Mechanism of action of antiviral drugs". International Journal of Immunopathology and Pharmacology 35 (styczeń 2021): 205873842110026. http://dx.doi.org/10.1177/20587384211002621.
Pełny tekst źródłaPardee, K. I., P. Ellis, M. Bouthillier, G. HN Towers i C. J. French. "Plant virus inhibitors from marine algae". Canadian Journal of Botany 82, nr 3 (1.03.2004): 304–9. http://dx.doi.org/10.1139/b04-002.
Pełny tekst źródłaDe Clercq, E. "Antiviral therapy for human immunodeficiency virus infections." Clinical Microbiology Reviews 8, nr 2 (kwiecień 1995): 200–239. http://dx.doi.org/10.1128/cmr.8.2.200.
Pełny tekst źródłaGonzález-Maldonado, Pamela, Nelson Alvarenga, Alberto Burgos-Edwards, Ma Eugenia Flores-Giubi, Javier E. Barúa, Ma Cristina Romero-Rodríguez, Ricardo Soto-Rifo i in. "Screening of Natural Products Inhibitors of SARS-CoV-2 Entry". Molecules 27, nr 5 (7.03.2022): 1743. http://dx.doi.org/10.3390/molecules27051743.
Pełny tekst źródłaJones, Gregg S., Fang Yu, Ameneh Zeynalzadegan, Joseph Hesselgesser, Xiaowu Chen, James Chen, Haolun Jin i in. "Preclinical Evaluation of GS-9160, a Novel Inhibitor of Human Immunodeficiency Virus Type 1 Integrase". Antimicrobial Agents and Chemotherapy 53, nr 3 (22.12.2008): 1194–203. http://dx.doi.org/10.1128/aac.00984-08.
Pełny tekst źródłaGlasky, Alvin J., William R. Roderick i J. C. Holper. "VIRAL SYNTHETASE INHIBITORS AS ANTIVIRAL AGENTS". Annals of the New York Academy of Sciences 130, nr 1 (16.12.2006): 412–18. http://dx.doi.org/10.1111/j.1749-6632.1965.tb12577.x.
Pełny tekst źródłaSerkedjieva, Julia, Lidiya Angelova, Mimi Remichkova i Iskra Ivanova. "Proteinase inhibitors fromStreptomyces with antiviral activity". Journal of Basic Microbiology 46, nr 6 (grudzień 2006): 504–12. http://dx.doi.org/10.1002/jobm.200510127.
Pełny tekst źródłaJi, Cheng. "Molecular Factors and Pathways of Hepatotoxicity Associated with HIV/SARS-CoV-2 Protease Inhibitors". International Journal of Molecular Sciences 24, nr 9 (27.04.2023): 7938. http://dx.doi.org/10.3390/ijms24097938.
Pełny tekst źródłaChang, Kyeong-Ok, Yunjeong Kim, Scott Lovell, Athri Rathnayake i William Groutas. "Antiviral Drug Discovery: Norovirus Proteases and Development of Inhibitors". Viruses 11, nr 2 (25.02.2019): 197. http://dx.doi.org/10.3390/v11020197.
Pełny tekst źródłaHerlihy, Koleen J., Joanne P. Graham, Robert Kumpf, Amy K. Patick, Rohit Duggal i Stephanie T. Shi. "Development of Intergenotypic Chimeric Replicons To Determine the Broad-Spectrum Antiviral Activities of Hepatitis C Virus Polymerase Inhibitors". Antimicrobial Agents and Chemotherapy 52, nr 10 (11.08.2008): 3523–31. http://dx.doi.org/10.1128/aac.00533-08.
Pełny tekst źródłaBillich, A., D. Scholz, B. Charpiot, H. Gstach, P. Lehr, P. Peichl i B. Rosenwirth. "Potent and Orally Bioavailable HIV-1 Proteinase Inhibitors Containing the 2-aminobenzylstatine Moiety". Antiviral Chemistry and Chemotherapy 6, nr 5 (październik 1995): 327–36. http://dx.doi.org/10.1177/095632029500600507.
Pełny tekst źródłaChan, Renee, Kin Tao, Jiqing Ye, Kevin Lui, Xiao Yang, Cong Ma i Paul Chan. "Inhibition of Influenza Virus Replication by Oseltamivir Derivatives". Pathogens 11, nr 2 (11.02.2022): 237. http://dx.doi.org/10.3390/pathogens11020237.
Pełny tekst źródłaHe, Xi, Shuo Quan, Min Xu, Silveria Rodriguez, Shih Lin Goh, Jiajie Wei, Arthur Fridman i in. "Generation of SARS-CoV-2 reporter replicon for high-throughput antiviral screening and testing". Proceedings of the National Academy of Sciences 118, nr 15 (25.03.2021): e2025866118. http://dx.doi.org/10.1073/pnas.2025866118.
Pełny tekst źródłaAfowowe, Tosin Oladipo, Yasuteru Sakurai, Shuzo Urata, Vahid Rajabali Zadeh i Jiro Yasuda. "Topoisomerase II as a Novel Antiviral Target against Panarenaviral Diseases". Viruses 15, nr 1 (30.12.2022): 105. http://dx.doi.org/10.3390/v15010105.
Pełny tekst źródłaFehrentz, J. A., B. Chomier, E. Bignon, S. Venaud, J. C. Chermann i D. Nisato. "HIV-1 protease inhibitors containing statine : Inhibitory potency and antiviral activity". Biochemical and Biophysical Research Communications 188, nr 2 (październik 1992): 865–72. http://dx.doi.org/10.1016/0006-291x(92)91136-e.
Pełny tekst źródłaChou, Sunwen, Laura C. Van Wechel i Gail I. Marousek. "Effect of Cell Culture Conditions on the Anticytomegalovirus Activity of Maribavir". Antimicrobial Agents and Chemotherapy 50, nr 7 (lipiec 2006): 2557–59. http://dx.doi.org/10.1128/aac.00207-06.
Pełny tekst źródłaDivocha, Valentina, i Irina Komarevzeva. "Antiviral proteinase inhibitors of plant and animal origin". Iberoamerican Journal of Medicine 2, nr 2 (9.03.2020): 43–48. http://dx.doi.org/10.53986/ibjm.2020.0010.
Pełny tekst źródłaZhao, Xiujuan, Yanyan Wang, Qinghua Cui, Ping Li, Lin Wang, Zinuo Chen, Lijun Rong i Ruikun Du. "A Parallel Phenotypic Versus Target-Based Screening Strategy for RNA-Dependent RNA Polymerase Inhibitors of the Influenza A Virus". Viruses 11, nr 9 (5.09.2019): 826. http://dx.doi.org/10.3390/v11090826.
Pełny tekst źródła