Gotowa bibliografia na temat „Antiviral inhibitors”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Antiviral inhibitors”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Antiviral inhibitors"
Frederickson, Robert. "Antiviral protease inhibitors". Nature Biotechnology 17, nr 12 (grudzień 1999): 1150. http://dx.doi.org/10.1038/70677.
Pełny tekst źródłaWang, Q. May, Robert B. Johnson, Louis N. Jungheim, Jeffrey D. Cohen i Elcira C. Villarreal. "Dual Inhibition of Human Rhinovirus 2A and 3C Proteases by Homophthalimides". Antimicrobial Agents and Chemotherapy 42, nr 4 (1.04.1998): 916–20. http://dx.doi.org/10.1128/aac.42.4.916.
Pełny tekst źródłaMello, Chris, Esmeralda Aguayo, Madeleine Rodriguez, Gary Lee, Robert Jordan, Tomas Cihlar i Gabriel Birkus. "Multiple Classes of Antiviral Agents ExhibitIn VitroActivity against Human Rhinovirus Type C". Antimicrobial Agents and Chemotherapy 58, nr 3 (23.12.2013): 1546–55. http://dx.doi.org/10.1128/aac.01746-13.
Pełny tekst źródłaVinson, Valda. "Promising antiviral protease inhibitors". Science 368, nr 6497 (18.06.2020): 1324.2–1324. http://dx.doi.org/10.1126/science.368.6497.1324-b.
Pełny tekst źródłaMorales Vasquez, Desarey, Jun-Gyu Park, Ginés Ávila-Pérez, Aitor Nogales, Juan Carlos de la Torre, Fernando Almazan i Luis Martinez-Sobrido. "Identification of Inhibitors of ZIKV Replication". Viruses 12, nr 9 (18.09.2020): 1041. http://dx.doi.org/10.3390/v12091041.
Pełny tekst źródłaSepúlveda, Claudia Soledad, Cybele Carina García i Elsa Beatriz Damonte. "Inhibitors of Nucleotide Biosynthesis as Candidates for a Wide Spectrum of Antiviral Chemotherapy". Microorganisms 10, nr 8 (12.08.2022): 1631. http://dx.doi.org/10.3390/microorganisms10081631.
Pełny tekst źródłaDe Nicolò, Amedeo, Marco Simiele, Andrea Calcagno, Adnan Mohamed Abdi, Stefano Bonora, Giovanni Di Perri i Antonio D'Avolio. "Intracellular Antiviral Activity of Low-Dose Ritonavir in Boosted Protease Inhibitor Regimens". Antimicrobial Agents and Chemotherapy 58, nr 7 (5.05.2014): 4042–47. http://dx.doi.org/10.1128/aac.00104-14.
Pełny tekst źródłaHolý, Antonín, Ivan Votruba i Erik De Clercq. "Structure-activity studies on open-chain analogues of nucleosides: Inhibition of S-adenosyl-L-homocysteine hydrolase and antiviral activity 1. Neutral open-chain analogues". Collection of Czechoslovak Chemical Communications 50, nr 1 (1985): 245–61. http://dx.doi.org/10.1135/cccc19850245.
Pełny tekst źródłaHewajuli, Dyah Ayu, i NLPI Dharmayanti. "Efficacy, Mechanism and Antiviral Resistance of Neuraminidase Inhibitors and Adamantane against Avian Influenza". Indonesian Bulletin of Animal and Veterinary Sciences 29, nr 2 (4.12.2019): 61. http://dx.doi.org/10.14334/wartazoa.v29i2.1951.
Pełny tekst źródłaHayden, Frederick G. "Perspectives on antiviral use during pandemic influenza". Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 356, nr 1416 (29.12.2001): 1877–84. http://dx.doi.org/10.1098/rstb.2001.1007.
Pełny tekst źródłaRozprawy doktorskie na temat "Antiviral inhibitors"
Li, Weikuan Schneller Stewart W. "Seeking mRNA methylation inhibitors as antiviral agents". Auburn, Ala, 2008. http://hdl.handle.net/10415/1540.
Pełny tekst źródłaourahmane, amine. "Discovery and Characterization of Cytomegalovirus Inhibitors using Reporter-based Antiviral Assays". VCU Scholars Compass, 2017. http://scholarscompass.vcu.edu/etd/5013.
Pełny tekst źródłaNevers, Quentin. "Développement d'une nouvelle famille d'inhibiteurs de cyclophilines à large spectre antiviral et étude de leurs mécanismes d'action dans les infections par le Virus de l'Hépatite C et les Coronavirus". Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC0013/document.
Pełny tekst źródłaOver the past decades, an increasing number of viruses has emerged or re-emerged in humans. Unfortunately, currently approved antiviral drugs target a small set of viruses. Thus, there is an urgent need for the development of broad-spectrum antiviral drugs.Cyclophilins are cellular proteins involved in a large number of biological processes, and in different viral lifecycles from unrelated families. They appear as a potential target for the development of broad-spectrum antiviral approaches. However, currently available cyclophilin inhibitors have drawbacks which limit their clinical use.By means of "fragment-based drug design", we generated a new class of small-molecule cyclophilin inhibitors (SMCypI), unrelated with those already available. Cristallographic studies revealed that the SMCypIs bind to two close pockets of the active site and inhibit cyclophilin PPIase activity. These compounds do not bear immunosuppressive properties and inhibit the replication of HIV, HCV and coronaviruses in vitro.We characterized the anti-HCV activity of C31, the most potent inhibitor of cyclophilin PPIase activity. C31 had pan-genotypic HCV inhibitor properties, with a high barrier to resistance and additive effects with currently approved anti-HCV agents. C31 blocked HCV replication by disrupting the interaction between the nonstructural viral protein NS5A and cyclophilin A in a PPIase-dependent manner. Finally, C31 was active on zika, yellow fever, dengue and West-Nile virus infections.The antiviral activity of the SMCypIs has then been characterized on HCoV-229E infection. Interestingly, PPIase inhibition was necessary, but not sufficient for antiviral effect. A structure-activity relationship study identified a key moiety in the SMCypIs at the interface between the two cyclophilin pockets. F836 has been identified as the most potent compound which inhibited both the cytopathic effect and the intracellular RNA of HCoV-229E without associated cytotoxicity and as potently as alisporivir. This compound targeted HCoV-229E entry at a post-attachment step and was also active on HCoV-OC43 and MERS-CoV strains. We then demonstrated that cyclophilin A was associated with viral particles. By means of CRISPR-Cas9, cell lines depleted for cyclophilin A were generated. Cyclophilin A was identified as a proviral factor for HCoV-229E and was partially involved in F836 antiviral effect. Cyclophilin A expression level was drastically decreased by infection.SMCypIs represent a unique tool to decipher the cellular and molecular mechanisms by which cyclophilins interfere with viral lifecycles, as well as drugable compounds that could find an indication as broad-spectrum antiviral drugs
González-Ortega, Emmanuel. "Resistance to HIV entry inhibitors: signature mutations as tool guide for the identification of new antiviral agents". Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/84059.
Pełny tekst źródłaADS‐J1 ha estat seleccionat per unir‐se a gp41 i inhibir la fusió de les membranes. A través de diversos assajos, incloent la generació de soques resistents a ADS‐J1, el nostre laboratori va demostrar que ADS‐J1 interactua amb gp120 i no amb gp41. Una publicació posterior va suggerir que ADS‐J1 s’uneix a la ‘pocket‐region’ de gp41, prevenint l’infecció pel virus. En el present treball, nosaltres confirmem que ADSJ1 interactua amb gp120 i no amb gp41 i que la recombinació de gp120 en un VIH silvestre restitueix el fenotip resistent. Assajos de temps de addició van demostrar clarament que ADS‐J1 no interactua amb gp41. VIRIP va ser identificat com un pèptid natural present en el hemofiltrat humà capaç d’inhibir la fusió de membranes operada per gp41 del VIH. Es va suggerir que VIRIP interactua amb el pèptid de fusió de gp41, bloquejant la fusió de les membranes. Nosaltres hem generat un virus resistent a VIR‐353, un anàleg de VIRIP. Addicionalment, hem determinat la combinació de mutacions que generen el fenotip resistent. Estudis recents van mostrar l'efectivitat de VIR‐576, un pèptid amb alta similitud a VIRIP i VIR‐353 en un assaig clínic fase I/II. La resistència a VIRIP/VIR‐353 va requerir un període de temps llarg per emergir, la qual cosa suggereix una elevada barrera genètica a la resistència. Les mutacions responsables del fenotip resistent van afectar en greument la capacitat replicativa del virus, no obstant això, diverses mutacions compensatòries van restaurar‐ne la capacitat replicativa, mantenint intacta la resistència a VIR‐353. L’activitat antiviral de T20 no sembla afectada per VIR‐353, la combinació dels dos inhibidors de fusió van mostrar un efecte additiu en la inhibició de la replicació. En general, els nostres resultats evidencien la plasticitat de les glicoproteïnes de l'embolcall del VIH. Aquesta plasticitat es realça quan el virus replica sota la pressió selectiva imposada per fàrmacs que inhibeixen la replicació viral, la qual cosa afegeix una barrera genètica addicional a ser superada pel virus.
Howe, Jonathon David. "Antiviral mechanisms of small molecules targeting the endoplasmic reticulum and Golgi apparatus". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:04368b4b-2fd3-4fc7-8f89-ec39cd87e37d.
Pełny tekst źródłaHoyte, Ashley Christopher. "Molecular Mechanisms for Antiviral Activities and HIV-1 Resistance to Allosteric Integrase Inhibitors". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1543436136541123.
Pełny tekst źródłaSwaminathan, Kavya. "Novel anthocyanin inhibitors to influenza neuraminidase and monitioring antiviral resistance by mass spectrometry". Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/10220.
Pełny tekst źródłaLUCIA, FALSITTA. "DDX3, a new frontier in broad-spectrum antiviral therapy: synthesis of potential inhibitors". Doctoral thesis, Università di Siena, 2020. http://hdl.handle.net/11365/1095615.
Pełny tekst źródłaGerace, Martina. "In search of new antiviral targets: Design and synthesis of new inhibitors of ZIKV Mtase and potential inhibitors of IMPDH". Doctoral thesis, Università di Siena, 2023. https://hdl.handle.net/11365/1227194.
Pełny tekst źródłaBiswas, S. "Study of antiviral resistance to helicase-primase inhibitors of herpes simplex virus type 1". Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.596674.
Pełny tekst źródłaKsiążki na temat "Antiviral inhibitors"
March, Darren. Designing new antiviral drugs for AIDS: HIV-1 protease and its inhibitors. Austin: R.G. Landes, 1996.
Znajdź pełny tekst źródłaAmerican Society for Microbiology. Eastern Pennsylvania Branch i Eastern Pennsylvania Branch of the American Society for Microbiology Symposium of Innovations in Antiviral Development and the Detection of Virus Infections (1990 : Philadelphia, Pa.), red. Innovations in antiviral development and the detection of virus infections. New York: Plenum Press, 1992.
Znajdź pełny tekst źródłaHIV-1 integrase: Mechanism and inhibitor design. Hoboken, N.J: Wiley, 2011.
Znajdź pełny tekst źródłaEsté, José Andrés. Mode of action and development of resistance to human immunodeficiency virus inhibitors that are targeted at early stages of infection. Leuven, Belgium: Leuven University Press, 1999.
Znajdź pełny tekst źródłaRNA interference and viruses: Current innovations and future trends. Norfolk, UK: Caister Academic Press, 2010.
Znajdź pełny tekst źródłaMartínez, Miguel Angel. RNA interference and viruses: Current innovations and future trends. Norfolk, UK: Caister Academic Press, 2010.
Znajdź pełny tekst źródłaHans-Georg, Kräusslich, Oroszlan Stephen, Wimmer Eckard i Cold Spring Harbor Laboratory, red. Viral proteinases as targets for chemotherapy. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press, 1989.
Znajdź pełny tekst źródłaBilimoria, Darius M. Studies involving measles virus receptor interaction and inhibitors of virus mediated membrane fusion (a prelude to a small animal model and antiviral agents directed). Ottawa: National Library of Canada, 1998.
Znajdź pełny tekst źródłaLendeckel, Uwe, i Nigel M. Hooper, red. Viral Proteases and Antiviral Protease Inhibitor Therapy. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2348-3.
Pełny tekst źródłaH, Wagman Gerald, i Cooper Raymond, red. Natural products isolation: Separation methods for antimicrobials, antivirals, and enzyme inhibitors. Amsterdam: Elsevier, 1989.
Znajdź pełny tekst źródłaCzęści książek na temat "Antiviral inhibitors"
Anderson, Jeffrey, Celia Schiffer, Sook-Kyung Lee i Ronald Swanstrom. "Viral Protease Inhibitors". W Antiviral Strategies, 85–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-79086-0_4.
Pełny tekst źródłaVuagniaux, Grégoire, Arnaud Hamel, Rafael Crabbé, Hervé C. Porchet i Jean-Maurice Dumont. "Cyclophilin Inhibitors". W Antiviral Drug Strategies, 147–80. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527635955.ch7.
Pełny tekst źródłaWong-Staal, Flossie, Guohong Liu i Jeffrey McKelvy. "HCV Viral Entry Inhibitors". W Antiviral Drugs, 329–37. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470929353.ch23.
Pełny tekst źródłaCoen, Donald M. "Antiherpesviral DNA Polymerase Inhibitors". W Antiviral Research, 1–18. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555815493.ch1.
Pełny tekst źródłaRoberts, Noel A. "Anti-influenza drugs and neuraminidase inhibitors". W Antiviral Agents, 35–77. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-7784-8_2.
Pełny tekst źródłaBaba, Masanori. "Entry Inhibitors of Human Immunodeficiency Virus". W Antiviral Research, 19–32. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555815493.ch2.
Pełny tekst źródłaCrowe, Suzanne. "New Reverse Transcriptase Inhibitors". W Antiviral Chemotherapy 5, 183–97. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4743-3_18.
Pełny tekst źródłaRen, Shijun, i Eric J. Lien. "Development of HIV protease inhibitors: A survey". W Antiviral Agents, 1–34. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-7784-8_1.
Pełny tekst źródłaMartinez-Cajas, Jorge L., i Mark A. Wainberg. "Inhibitors of the Human Immunodeficiency Virus Protease". W Antiviral Research, 113–35. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555815493.ch7.
Pełny tekst źródłaZimmermann, H., G. Hewlett i H. Rübsamen-Waigmann. "Other Inhibitors of Viral Enzymes and Functions". W Antiviral Strategies, 155–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-79086-0_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Antiviral inhibitors"
"Application of 3D image analysis to facilitate the identification of antiviral inhibitors". W Microscience Microscopy Congress 2023 incorporating EMAG 2023. Royal Microscopical Society, 2023. http://dx.doi.org/10.22443/rms.mmc2023.189.
Pełny tekst źródłaFernández, C., A. Cunha i M. Alves. "NARMA-L2-based Antiviral Therapy for Infected CD4+ T Cells in a Nonlinear Model for HIV Dynamics: Protease Inhibitors-based Approach". W 12th International Conference on Agents and Artificial Intelligence. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0008980606750683.
Pełny tekst źródłaPEÑA, CESAR, Amanda Briena Batista Flores da Cunha i Maise Araujo Alves. "NARMA-L2-based nonlinear model for HIV dynamics: behavior of infected/uninfected CD4+ T cells for antiviral therapy based on protease inhibitors". W ANAIS DO 14º SIMPóSIO BRASILEIRO DE AUTOMAçãO INTELIGENTE. Galoa, 2019. http://dx.doi.org/10.17648/sbai-2019-112481.
Pełny tekst źródłaSolis-Calero, C., PA Morais, FF Maia Jr, VN Freire i HF Carvalho. "Explaining SARS-CoV-2 3CL Mpro binding to peptidyl Michael acceptor and a ketone-based inhibitors using Molecular fractionation with conjugate caps method". W VIII Simpósio de Estrutura Eletrônica e Dinâmica Molecular. Universidade de Brasília, 2020. http://dx.doi.org/10.21826/viiiseedmol2020185.
Pełny tekst źródłaGriego, Anastacia M., Pamela Barraza, Chelin Hu, Agnieszka Dziduszko, Brianna K. Crowley, Helen J. Hathaway, Julie E. Bauman i Michelle A. Ozbun. "Abstract 3176: The EGFR pathway as the Achilles’ heel for human papillomavirus-induced tumors: EGFR/MAPK pathway inhibitors exhibit antiviral activities and limit tumor growthin vivo". W Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3176.
Pełny tekst źródłaAy, Emrah, i Nizami Duran. "Synergistic Efficacy of Eucalyptol with Acyclovir against HSV-2". W The 9th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2022. http://dx.doi.org/10.24264/icams-2022.iii.3.
Pełny tekst źródłaShahab, S. N., i E. N. Vasyukevich. "TRIAZAVIRIN AS A POTENTIAL PROTEASE M INHIBITOR OF CORONOVIRUS 2019-nCoV". W SAKHAROV READINGS 2021: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute, 2021. http://dx.doi.org/10.46646/sakh-2021-1-371-374.
Pełny tekst źródłaBartlett, Nathan W., Louise Slater, Gaetano Caramori, Simon Message, Sebastian L. Johnston i Michael R. Edwards. "Reduced NF-ºB P65 Expression Inhibits Rhinovirus-Induced Inflammation Without Compromising Antiviral Immunity". W American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a3875.
Pełny tekst źródłaXu, F., W. Ouyang, J. Xia, L. Yang i H. Zhou. "NMI Inhibits Antiviral Immunity by Polyubiquitination and Degradation of IRF3 and IRF7 Through TRIM21". W American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a3975.
Pełny tekst źródłaNedeljković, Nikola V., Vladimir D. Dobričić, Marina Ž. Mijajlović, Gordana P. Radić, Miloš V. Nikolić, Ana S. Stanković i Zorica B. Vujić. "„IN SILICO“ PREDICTION OF PHARMACOKINETIC PROPERTIES AND DRUGLIKENESS OF NOVEL THIOUREA DERIVATIVES OF NAPROXEN". W 1st INTERNATIONAL Conference on Chemo and BioInformatics. Institute for Information Technologies, University of Kragujevac, 2021. http://dx.doi.org/10.46793/iccbi21.371n.
Pełny tekst źródłaRaporty organizacyjne na temat "Antiviral inhibitors"
Edmundson, Scott, Michael Huesemann, Sherry Cady, Li-Jung Kuo, Brady Anderson i Daman Reynolds. VITAL- Viral InhibiTors from ALgae: Generating Extracts for Antiviral Activity Assays. Office of Scientific and Technical Information (OSTI), październik 2020. http://dx.doi.org/10.2172/1776864.
Pełny tekst źródłaLoebenstein, Gad, M. Chessin i Abed Gera. Resistance Mechanisms to Viruses in Plants Associated with Antiviral Substances (Inhibitors of Virus Replication). United States Department of Agriculture, marzec 1987. http://dx.doi.org/10.32747/1987.7695597.bard.
Pełny tekst źródłaChejanovsky, Nor, i Bruce A. Webb. Potentiation of Pest Control by Insect Immunosuppression. United States Department of Agriculture, styczeń 2010. http://dx.doi.org/10.32747/2010.7592113.bard.
Pełny tekst źródłaLapidot, Moshe, i Vitaly Citovsky. molecular mechanism for the Tomato yellow leaf curl virus resistance at the ty-5 locus. United States Department of Agriculture, styczeń 2016. http://dx.doi.org/10.32747/2016.7604274.bard.
Pełny tekst źródłaGafni, Yedidya, Moshe Lapidot i Vitaly Citovsky. Dual role of the TYLCV protein V2 in suppressing the host plant defense. United States Department of Agriculture, styczeń 2013. http://dx.doi.org/10.32747/2013.7597935.bard.
Pełny tekst źródła