Gotowa bibliografia na temat „Antisense nucleic acids”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Antisense nucleic acids”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Antisense nucleic acids"

1

Goodchild, John. "Antisense nucleic acids and proteins". Cell Biophysics 18, nr 3 (czerwiec 1991): 295–96. http://dx.doi.org/10.1007/bf02989820.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Razzak, Mina. "Antisense nucleic acids—tough delivery". Nature Reviews Urology 10, nr 12 (19.11.2013): 681. http://dx.doi.org/10.1038/nrurol.2013.271.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Soomets, Ursel. "Antisense properties of peptide nucleic acids". Frontiers in Bioscience 4, nr 1-3 (1999): d782. http://dx.doi.org/10.2741/soomets.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Langel, Ülo. "Antisense properties of peptide nucleic acids". Frontiers in Bioscience 4, nr 4 (1999): d782–786. http://dx.doi.org/10.2741/a394.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Tonkinson, J. L., i C. A. Stein. "Antisense Nucleic Acids — Prospects for Antiviral Intervention". Antiviral Chemistry and Chemotherapy 4, nr 4 (sierpień 1993): 193–200. http://dx.doi.org/10.1177/095632029300400401.

Pełny tekst źródła
Streszczenie:
Antisense oligodeoxynucleotides are a promising new class of antiviral agent. Because they bind in a sequence-specific manner to complementary regions of mRNA, oligos can inhibit gene expression in a sequence-specific manner. The ‘antisense’ approach has been used successfully to block cellular expression and replication of several viruses including Human Immunodeficiency Virus-1 (HIV-1), and Herpes Simplex Virus (HSV). However, the antiviral effect of oligodeoxynucleotides is not limited to sequence-specific inhibition of gene expression. Non sequence-specific effects are frequently observed, presumably as a result of their properties as polyanions. Occasionally (e.g. for HIV-1) these non sequence-specific effects are also therapeutic. The prospects for antisense oligodeoxynucleotide therapy for viral disease are discussed.
Style APA, Harvard, Vancouver, ISO itp.
6

Morihiro, Kunihiko, Yuuya Kasahara i Satoshi Obika. "Biological applications of xeno nucleic acids". Molecular BioSystems 13, nr 2 (2017): 235–45. http://dx.doi.org/10.1039/c6mb00538a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Malcolm, Alan D. B. "Uses of antisense nucleic acids — an introduction". Biochemical Society Transactions 20, nr 4 (1.11.1992): 745–46. http://dx.doi.org/10.1042/bst0200745.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Flores, Maria Vega C., David Atkins, Thomas Stanley Stewart, Arthur van Aerschot i Piet Herdewijn. "Antimalarial antisense activity of hexitol nucleic acids". Parasitology Research 85, nr 10 (24.08.1999): 864–66. http://dx.doi.org/10.1007/s004360050647.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Nielsen, Peter. "Targeting structured nucleic acids with antisense agents ▾". Drug Discovery Today 8, nr 10 (maj 2003): 440. http://dx.doi.org/10.1016/s1359-6446(03)02702-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Li, Hui, Bohan Zhang, Xueguang Lu, Xuyu Tan, Fei Jia, Yue Xiao, Zehong Cheng i in. "Molecular spherical nucleic acids". Proceedings of the National Academy of Sciences 115, nr 17 (9.04.2018): 4340–44. http://dx.doi.org/10.1073/pnas.1801836115.

Pełny tekst źródła
Streszczenie:
Herein, we report a class of molecular spherical nucleic acid (SNA) nanostructures. These nano-sized single molecules are synthesized from T8 polyoctahedral silsesquioxane and buckminsterfullerene C60 scaffolds, modified with 8 and 12 pendant DNA strands, respectively. These conjugates have different DNA surface densities and thus exhibit different levels of nuclease resistance, cellular uptake, and gene regulation capabilities; the properties displayed by the C60 SNA conjugate are closer to those of conventional and prototypical gold nanoparticle SNAs. Importantly, the C60 SNA can serve as a single entity (no transfection agent required) antisense agent to efficiently regulate gene expression. The realization of molecularly pure forms of SNAs will open the door for studying the interactions of such structures with ligands and living cells with a much greater degree of control than the conventional polydisperse forms of SNAs.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Antisense nucleic acids"

1

Abbas, Sahar. "Design and synthesis of backbone-modified nucleic acids". Thesis, University of Nottingham, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368273.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Bijapur, Jeevan. "Factors affecting the stability of nucleic acids". Thesis, University of Southampton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299497.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Slaitas, Andis. "Development of a new PNA analogue as a potential antisense drug and tool for life-science studies /". Stockholm : Karolinska institutet, 2004. http://diss.kib.ki.se/2004/91-7349-642-1/.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Dryselius, Rikard. "Bacterial gene expression inhibition with antisense peptide nucleic acids /". Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-338-8/.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Dysko, Anna Monika. "Synthesis and properties of oligonucleotides containing triazole backbone linkages and 2'-modifications for therapeutic applications". Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:20fc1203-9751-4654-b497-5f4d97f874a1.

Pełny tekst źródła
Streszczenie:
Antisense oligonucleotides are short strands of DNA, which bind to their complementary mRNA target to prevent protein translation. Although conceptually appealing, for their practical use as drugs, these oligonucleotides must have better cellular uptake, resistance to enzymatic degradation, and target selectivity. In this work, new synthetic chemistry is established to prepare a novel group of chemically modified oligonucleotides. The anionic phosphodiester backbone is partially replaced with a neutral triazole and, at the same time, the 2'-position of the ribose sugar is functionalised with pyrene, anthraquinone, or guanidine moieties. Being unnatural, the triazole backbone is inherently resistant to enzymatic degradation, while the reduced negative charge potentially improves cell penetration. The limitation of introduction of a triazole backbone into the antisense strand is its destabilising effect on the duplex formation with their complementary target. In this study, the 2'-modifications are used to restore the lost duplex stability and they have been found to be very efficient stabilising moieties. To evaluate the viability of this strategy, reporter gene assays based on splice-switching model are used. Promisingly, these modified oligonucleotides have successfully shown antisense splice-switching activity, suggesting there is further scope for their improvement.
Style APA, Harvard, Vancouver, ISO itp.
6

Lewis, Karen Jane. "Biodegradable polymers for the sustained release of antisense nucleic acids". Thesis, Aston University, 1996. http://publications.aston.ac.uk/11054/.

Pełny tekst źródła
Streszczenie:
Antisense oligodeoxynucleotides can selectively inhibit individual gene expression provided they remain stable at the target site for a sufficient period of time. Thus, the efficacy of antisense oligodeoxynucleotides may be improved by employing a sustained release delivery system which would protect from degradation by nucleases whilst delivering the nucleic acid in a controlled manner to the site of action. Biodegradable polymer films and micro spheres were evaluated as delivery devices for the oligodeoxynucleotides and ribozymes. Polymers such as polylactide, polyglycolide, polyhydroxybutyrate and polyhydroxyvalerate were used due to their biocompatability and non toxic degradation products. Release profiles of antisense nucleic acids from films over 28 days was biphasic, characterised by an initial burst release during the first 48 hours followed by a more sustained release. Release from films of longer antisense nucleic acids was slower compared to shorter nucleic acids. Backbone type also affected release, although to a lesser extent than length. Total release of the nucleic acids is dependent upon polymer degradation, no degradation of the polymer films was evident over the 28 day period, due to the high molecular weight and crystallinity of the polymers required to make solvent cast films. Backbone length and type did not affect release from microspheres, release was generally faster than from films, due to the increased surface area, and low molecular weight polymers which showed signs of degradation over the release period, resulting in a triphasic release profile. An increase in release was observed when sphere size and polymer molecular weight were decreased. The polymer entrapped phosphodiester oligodeoxynucleotides and ribozymes had enhanced stability compared to free oligodeoxynucleotides and ribozymes when incubated in serum. The released nucleic acids were still capable of hybridising to their target sequence, indicating that the fabrication processes did not adversely effect the properties of the antisense nucleic acids. Oligodeoxynucleotides loaded in 2μm spheres had a 10 fold increase in macrophage association compared to free oligodeoxynucleotides. Fluorescent microscopy indicates that the polymer entrapped oligodeoxynucleotide is concentrated inside the cell, whereas free oligodeoxynucleotides are concentrated at the cell membrane. Biodegradable polymers can reduce the limitations of antisense therapy and thus offer a potential therapeutic advantage.
Style APA, Harvard, Vancouver, ISO itp.
7

Dong, Shuzhi Dong Shuzhi. "I. Restriction of DNA conformation by spirocyclic annulation at C-4' II. Studies toward the enantioselective synthesis of pestalotiopsin A /". Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1174627553.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Xu, Jian, i 徐堅. "Using antisense oligonucleotide in whole embryo culture to study gene interactions during mouse gastrulation". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31220150.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Xu, Jian. "Using antisense oligonucleotide in whole embryo culture to study gene interactions during mouse gastrulation /". Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19918884.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

McCracken, Meredith A. "Role of protein kinase C isoforms in human breast tumor cell survival". Morgantown, W. Va. : [West Virginia University Libraries], 2002. http://etd.wvu.edu/templates/showETD.cfm?recnum=2441.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--West Virginia University, 2002.
Title from document title page. Document formatted into pages; contains xii, 161 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 140-158).
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Antisense nucleic acids"

1

A, Stein Cy, i Krieg Arthur M, red. Applied antisense oligonucleotide technology. New York: Wiley-Liss, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Mol, Joseph N. M., 1948- i Krol, Alexander R. van der, 1956-, red. Antisense nucleic acids and proteins: Fundamentals and applications. New York: M. Dekker, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

H, Murray James A., red. Antisense RNA and DNA. New York: Wiley-Liss, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Ugent, Steven Jay. Antisense oligonucleotides: Psoralen photoreactivity and enzymatic resistance. [S.l: s.n.], 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

G, Hernandes A., red. Antisense elements (genetics) research focus. Hauppauge, N.Y: Nova Science Publishers, 2007.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Lewis, Karen Jane. Biodegradable polymers for the sustained release of antisense nucleic acids. Birmingham: Aston University. Department of Biological and Pharmaceutical Sciences, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Saghir, Akhtar, red. Delivery strategies for antisense oligonucleotide therapeutics. Boca Raton: CRC Press, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

C, Taylor Jessica, i Williams Amelia J, red. Research progress in antisense elements (genetics). New York: Nova Science, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Derek, Chadwick, Cardew Gail i Symposium on Oligonucleotides as Therapeutic Agents (1997 : Ciba Foundation), red. Oligonucleotides as therapeutic agents. Chichester: Wiley, 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

1922-, Weiss Benjamin, red. Antisense oligodeoxynucleotides and antisense RNA: Novel pharmacological and therapeutic agents. Roca Raton, Fla: CRC Press, 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Antisense nucleic acids"

1

Houba-Hérin, N., i M. Inouye. "Antisense RNA". W Nucleic Acids and Molecular Biology, 210–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-46596-3_13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Goh, Shan, Jem Stach i Liam Good. "Antisense Effects of PNAs in Bacteria". W Peptide Nucleic Acids, 223–36. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-553-8_18.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Goltermann, Lise, i Peter E. Nielsen. "PNA Antisense Targeting in Bacteria: Determination of Antibacterial Activity (MIC) of PNA-Peptide Conjugates". W Peptide Nucleic Acids, 231–39. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0243-0_14.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Liang, Xue-hai, Timothy A. Vickers i Stanley T. Crooke. "Antisense-Mediated Reduction of Eukaryotic Noncoding RNAs". W From Nucleic Acids Sequences to Molecular Medicine, 191–214. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27426-8_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Gait, Michael J., i Sudhir Agrawal. "Introduction and History of the Chemistry of Nucleic Acids Therapeutics". W Methods in Molecular Biology, 3–31. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2010-6_1.

Pełny tekst źródła
Streszczenie:
AbstractThis introduction charts the history of the development of the major chemical modifications that have influenced the development of nucleic acids therapeutics focusing in particular on antisense oligonucleotide analogues carrying modifications in the backbone and sugar. Brief mention is made of siRNA development and other applications that have by and large utilized the same modifications. We also point out the pitfalls of the use of nucleic acids as drugs, such as their unwanted interactions with pattern recognition receptors, which can be mitigated by chemical modification or used as immunotherapeutic agents.
Style APA, Harvard, Vancouver, ISO itp.
6

Eritja, Ramon, Montserrat Terrazas, Santiago Grijalvo, Anna Aviñó, Adele Alagia, Sónia Pérez-Rentero i Juan Carlos Morales. "Challenges and Opportunities for Oligonucleotide-Based Therapeutics by Antisense and RNA Interference Mechanisms". W Chemical Biology of Nucleic Acids, 227–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54452-1_13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Magistri, Marco, i Mohammad Ali Faghihi. "Natural Antisense Transcripts Mediate Regulation of Gene Expression". W From Nucleic Acids Sequences to Molecular Medicine, 247–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27426-8_10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Caruso, Gerardo, Mariella Caffo, Giuseppe Raudino, Federica Raudino, Mario Venza i Francesco Tomasello. "Antisense Oligonucleotides in the Treatment of Malignant Gliomas". W From Nucleic Acids Sequences to Molecular Medicine, 215–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27426-8_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Di Cresce, Christine, Colin Way, Mateusz Rytelewski, Saman Maleki Vareki, Supritha Nilam, Mark D. Vincent, James Koropatnick i Peter J. Ferguson. "Antisense Technology: From Unique Laboratory Tool to Novel Anticancer Treatments". W From Nucleic Acids Sequences to Molecular Medicine, 145–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27426-8_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Stetsenko, Dmitry A. "Mesyl Phosphoramidate Oligonucleotides: A New Promising Type of Antisense Agents". W Handbook of Chemical Biology of Nucleic Acids, 1–41. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-16-1313-5_19-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Antisense nucleic acids"

1

Van Aerschot, Arthur, Mark Vandermeeren, Johan Geysen, Walter Luyten, Marc Miller, David Atkins, Sonia Preveral, Ester Saison-Behmoaras i Piet Herdewijn. "In vitro evaluation of hexitol nucleic acid antisense oligonucleotides". W XIth Symposium on Chemistry of Nucleic Acid Components. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 1999. http://dx.doi.org/10.1135/css199902151.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Marzenell, Paul D., Helen Hagen, Larisa Kovbasyuk i Andriy Mokhir. "Chemically modified phosphorothioate DNA and 2'-OMe RNA as antisense agents". W XVth Symposium on Chemistry of Nucleic Acid Components. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2011. http://dx.doi.org/10.1135/css201112391.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Wojtczak, Blazej A., Agnieszka Andrysiak i Zbigniew J. Lesnikowski. "An approach towards synthesis of antisense oligonucleotides modified with lipophilic boron clusters via "click chemistry" method". W XIVth Symposium on Chemistry of Nucleic Acid Components. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2008. http://dx.doi.org/10.1135/css200810482.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Ravn, Jacob, Maj Hedtjärn, Niels Fisker, Joachim Elmén, Marie W. Lindblom, Henrik F. Hansen, Michael Meldgaard, Ellen M. Straarup, Jens B. Hansen i Christoph Rosenbohm. "Locked nucleic acid antisense oligonucleotides targeting apolipoprotein B: the effect of short sequences and α-L-LNA insertion". W XVth Symposium on Chemistry of Nucleic Acid Components. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2011. http://dx.doi.org/10.1135/css201112444.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Greco, Francesca, Elena Cesaro, Andrea Falanga, Rosa Catapano, Simona Romano, Nicola Borbone, Arianna Pastore i in. "A novel antisense strategy peptide nucleic acid-based to downregulate CD5 expression in chronic lymphocytic leukemia". W 7th International Electronic Conference on Medicinal Chemistry. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/ecmc2021-11396.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Levin, Arthur A., Lee M. Greenberger, Aby Buchbinder, Bo R. Hansen, Maj Hedtjärn, Sakari Kauppinen, Henrik Oerum i Ivan D. Horak. "Abstract SY31-02: Locked nucleic acid (LNA)-modified antisense oligonucleotides as anticancer agents: Using high-affinity antisense molecules in the laboratory and in the clinic". W Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-sy31-02.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Brown, Paige K., Ammar T. Qureshi, Daniel J. Hayes i W. Todd Monroe. "Targeted Gene Silencing With Light and a Silver Nanoparticle Antisense Delivery System". W ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53647.

Pełny tekst źródła
Streszczenie:
Targeted delivery and controlled release of oligonucleotide therapeutics in vivo are essential aspects of an ideal delivery vehicle. Here we demonstrate the synthesis and in vitro/intracellular characterization of silver nanoparticle (SNP) photolabile nucleic acid conjugates, with the aim of developing a nanoparticulate platform for inducible gene silencing. Due to unique size related properties, nanostructures are being increasingly utilized for intracellular diagnostics and delivery applications. While most nanoscale delivery platforms are polymeric in composition, studies of metallic nanoparticles have highlighted their suitability for delivery of therapeutic agents such as antisense oligonucleotides [1]. The potential benefits of noble metal nanoparticles in delivery applications include tunable size and shape, ease of bulk synthesis and functionalization via ‘wet chemistry’ techniques, and enhanced stability of tethered DNA [2]. Silver is one of the best surface-enhancing substrates available for nanostructure synthesis [3]. SNP composites afford external control over surface-tethered drug release via external triggers.
Style APA, Harvard, Vancouver, ISO itp.
8

Thomas, Sufi M., Shrinivas Rapiredd, Bichismita Sahu, Sonali Joyce i Danith Ly. "Abstract C175: Antisense EGFR guanidium‐based peptide nucleic acid (GPNA) oligomers as an antitumor agent for head and neck cancer". W Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Nov 15-19, 2009; Boston, MA. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/1535-7163.targ-09-c175.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Klar, Richard, Clara Seger, Nicole Kirchhammer, André Maaske, Julia Festag, Laura Fernandez Rodriguez, Mélanie Buchi i in. "434 Targeting the expression of Neuropilin-1 by locked nucleic acid modified antisense oligonucleotides results in potent anti-tumor activity in vivo". W SITC 37th Annual Meeting (SITC 2022) Abstracts. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jitc-2022-sitc2022.0434.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Sapra, Puja, Yixian Zhang, Stephen Castaneda, Steven Kim, Patricia Kraft, Raj Bandaru, Lee M. Greenberger i Ivan D. Horak. "Abstract C144: A locked nucleic acid antisense oligonucleotode against androgen receptor, down‐modulates target mRNA and causes antitumor effects in xenograft models of prostate cancer". W Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Nov 15-19, 2009; Boston, MA. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/1535-7163.targ-09-c144.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii