Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: ANTIMICROBIAL DEFENSE.

Artykuły w czasopismach na temat „ANTIMICROBIAL DEFENSE”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „ANTIMICROBIAL DEFENSE”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Cove, Jonathan H., i E. Anne Eady. "Cutaneous antimicrobial defense". Clinics in Dermatology 16, nr 1 (styczeń 1998): 141–47. http://dx.doi.org/10.1016/s0738-081x(97)00177-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Visan, Ioana. "Nociceptors in antimicrobial defense". Nature Immunology 21, nr 2 (24.01.2020): 103. http://dx.doi.org/10.1038/s41590-019-0586-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Meister, Marie, Bruno Lemaitre i Jules A. Hoffmann. "Antimicrobial peptide defense inDrosophila". BioEssays 19, nr 11 (listopad 1997): 1019–26. http://dx.doi.org/10.1002/bies.950191112.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Castro, Mariana, i Wagner Fontes. "Plant Defense and Antimicrobial Peptides". Protein & Peptide Letters 12, nr 1 (1.01.2005): 11–16. http://dx.doi.org/10.2174/0929866053405832.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Brubaker, S. W., i D. M. Monack. "Microbial metabolite triggers antimicrobial defense". Science 348, nr 6240 (11.06.2015): 1207–8. http://dx.doi.org/10.1126/science.aac5835.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Brown, Kelly L., i Robert EW Hancock. "Cationic host defense (antimicrobial) peptides". Current Opinion in Immunology 18, nr 1 (luty 2006): 24–30. http://dx.doi.org/10.1016/j.coi.2005.11.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Mukherjee, Sohini, i Lora V. Hooper. "Antimicrobial Defense of the Intestine". Immunity 42, nr 1 (styczeń 2015): 28–39. http://dx.doi.org/10.1016/j.immuni.2014.12.028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Sahl, Hans Georg. "Optimizing Antimicrobial Host Defense Peptides". Chemistry & Biology 13, nr 10 (październik 2006): 1015–17. http://dx.doi.org/10.1016/j.chembiol.2006.10.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Kwiecien, Kamila, Aneta Zegar, James Jung, Piotr Brzoza, Mateusz Kwitniewski, Urszula Godlewska, Beata Grygier, Patrycja Kwiecinska, Agnieszka Morytko i Joanna Cichy. "Architecture of antimicrobial skin defense". Cytokine & Growth Factor Reviews 49 (październik 2019): 70–84. http://dx.doi.org/10.1016/j.cytogfr.2019.08.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Simanski, Maren, Bente Köten, Jens-Michael Schröder, Regine Gläser i Jürgen Harder. "Antimicrobial RNases in Cutaneous Defense". Journal of Innate Immunity 4, nr 3 (2012): 241–47. http://dx.doi.org/10.1159/000335029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Bilej, M., P. De Baetselier i A. Beschin. "Antimicrobial defense of the earthworm". Folia Microbiologica 45, nr 4 (sierpień 2000): 283–300. http://dx.doi.org/10.1007/bf02817549.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Munro, Nancy. "Antimicrobial Resistance". AACN Advanced Critical Care 26, nr 3 (1.07.2015): 225–30. http://dx.doi.org/10.4037/nci.0000000000000102.

Pełny tekst źródła
Streszczenie:
The health care system is challenged by another serious issue: antimicrobial resistance. Clostridium difficile is the most common infection in health care institutions and is becoming resistant to standard treatment. Carbapenem-resistant enterobacteriaceae can be found in almost every state in the United States. Confounding the antimicrobial resistance issue is the fact that few new antimicrobials are being developed by pharmaceutical companies. The situation is so critical that the White House issued a strategic plan in September 2014 to deal with antimicrobial resistance. One challenge in that plan is to better understand how microbes have become resistant. Microbes have developed defense mechanisms such as bacteriophages and bacteriocins to survive for thousands of years. If science can start to use these mechanisms to help combat resistant organisms in combination with antimicrobials and strong epidemiological interventions, the battle against antimicrobial resistance may succeed.
Style APA, Harvard, Vancouver, ISO itp.
13

Jenssen, Håvard, Pamela Hamill i Robert E. W. Hancock. "Peptide Antimicrobial Agents". Clinical Microbiology Reviews 19, nr 3 (lipiec 2006): 491–511. http://dx.doi.org/10.1128/cmr.00056-05.

Pełny tekst źródła
Streszczenie:
SUMMARY Antimicrobial host defense peptides are produced by all complex organisms as well as some microbes and have diverse and complex antimicrobial activities. Collectively these peptides demonstrate a broad range of antiviral and antibacterial activities and modes of action, and it is important to distinguish between direct microbicidal and indirect activities against such pathogens. The structural requirements of peptides for antiviral and antibacterial activities are evaluated in light of the diverse set of primary and secondary structures described for host defense peptides. Peptides with antifungal and antiparasitic activities are discussed in less detail, although the broad-spectrum activities of such peptides indicate that they are important host defense molecules. Knowledge regarding the relationship between peptide structure and function as well as their mechanism of action is being applied in the design of antimicrobial peptide variants as potential novel therapeutic agents.
Style APA, Harvard, Vancouver, ISO itp.
14

Cytryńska, Małgorzata, i Agnieszka Zdybicka-Barabas. "Defense peptides: recent developments". Biomolecular Concepts 6, nr 4 (1.08.2015): 237–51. http://dx.doi.org/10.1515/bmc-2015-0014.

Pełny tekst źródła
Streszczenie:
AbstractDefense peptides are small amphipathic molecules that exhibit antimicrobial, antitumor, antiviral, and immunomodulatory properties. This review summarizes current knowledge on the mechanisms of antimicrobial activity of cationic and anionic defense peptides, indicating peptide-based as well as microbial cell-based factors affecting this activity. The peptide-based factors include charge, hydrophibicity, and amphipathicity, whereas the pathogen-based factors are membrane lipid composition, presence of sterols, membrane fluidity, cell wall components, and secreted factors such as extracellular proteinases. Since defense peptides have been considered very promising molecules that could replace conventional antibiotics in the era of drug-resistant pathogens, the issue of microbial resistance to antimicrobial peptides (AMPs) is addressed. Furthermore, selected approaches employed for optimization and de novo design of effective AMPs based on the properties recognized as important for the function of natural defense peptides are presented.
Style APA, Harvard, Vancouver, ISO itp.
15

Patocka, Jiri, Eugenie Nepovimova, Blanka Klimova, Qinghua Wu i Kamil Kuca. "Antimicrobial Peptides: Amphibian Host Defense Peptides". Current Medicinal Chemistry 26, nr 32 (19.11.2019): 5924–46. http://dx.doi.org/10.2174/0929867325666180713125314.

Pełny tekst źródła
Streszczenie:
Antimicrobial Peptides (AMPs) are one of the most common components of the innate immune system that protect multicellular organisms against microbial invasion. The vast majority of AMPs are isolated from the frog skin. Anuran (frogs and toads) skin contains abundant AMPs that can be developed therapeutically. Such peptides are a unique but diverse group of molecules. In general, more than 50% of the amino acid residues form the hydrophobic part of the molecule. Normally, there are no conserved structural motifs responsible for activity, although the vast majority of the AMPs are cationic due to the presence of multiple lysine residues; this cationicity has a close relationship with antibacterial activity. Notably, recent evidence suggests that synthesis of AMPs in frog skin may confer an advantage on a particular species, although they are not essential for survival. Frog skin AMPs exert potent activity against antibiotic-resistant bacteria, protozoa, yeasts, and fungi by permeating and destroying the plasma membrane and inactivating intracellular targets. Importantly, since they do not bind to a specific receptor, AMPs are less likely to induce resistance mechanisms. Currently, the best known amphibian AMPs are esculentins, brevinins, ranacyclins, ranatuerins, nigrocin-2, magainins, dermaseptins, bombinins, temporins, and japonicins-1 and -2, and palustrin-2. This review focuses on these frog skin AMPs and the mechanisms underlying their antimicrobial activity. We hope that this review will provide further information that will facilitate further study of AMPs and cast new light on novel and safer microbicides.
Style APA, Harvard, Vancouver, ISO itp.
16

Fritig, Bernard, Thierry Heitz i Michel Legrand. "Antimicrobial proteins in induced plant defense". Current Opinion in Immunology 10, nr 1 (luty 1998): 16–22. http://dx.doi.org/10.1016/s0952-7915(98)80025-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Kraus, Dirk, i Andreas Peschel. "Staphylococcus aureusevasion of innate antimicrobial defense". Future Microbiology 3, nr 4 (sierpień 2008): 437–51. http://dx.doi.org/10.2217/17460913.3.4.437.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Braff, Marissa H., Antoanella Bardan, Victor Nizet i Richard L. Gallo. "Cutaneous Defense Mechanisms by Antimicrobial Peptides". Journal of Investigative Dermatology 125, nr 1 (lipiec 2005): 9–13. http://dx.doi.org/10.1111/j.0022-202x.2004.23587.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Li, Chun, Hans-Matti Blencke, Tor Haug i Klara Stensvåg. "Antimicrobial peptides in echinoderm host defense". Developmental & Comparative Immunology 49, nr 1 (marzec 2015): 190–97. http://dx.doi.org/10.1016/j.dci.2014.11.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Arnason, John T., i Mark A. Bernards. "Impact of constitutive plant natural products on herbivores and pathogensThe present review is one in the special series of reviews on animal–plant interactions." Canadian Journal of Zoology 88, nr 7 (lipiec 2010): 615–27. http://dx.doi.org/10.1139/z10-038.

Pełny tekst źródła
Streszczenie:
Plants defend themselves from pests with deterrent or toxic phytochemicals. In addition to the development of preformed mechanical barriers such as cutin and suberin, the first line of defense for plants against pathogens and herbivores is constitutive (preformed) biologically active inhibitors. Because of the adaptation of insects and pathogens to these inhibitors, plants have evolved a stunning diversity of new and different bioactive molecules to combat pests. Some representative mechanisms of plant defense include the use of antimicrobial, anitfeedant, and phototoxic molecules. Examples of natural product defenses of specific plant families are also described. Diversity and redundancy in plant defenses is key to slowing pest resistance to host-plant defenses.
Style APA, Harvard, Vancouver, ISO itp.
21

Wertz, Philip W., i Sarah de Szalay. "Innate Antimicrobial Defense of Skin and Oral Mucosa". Antibiotics 9, nr 4 (3.04.2020): 159. http://dx.doi.org/10.3390/antibiotics9040159.

Pełny tekst źródła
Streszczenie:
This special issue intends to review and update our understanding of the antimicrobial defense mechanisms of the skin and oral cavity. These two environments are quite different in terms of water, pH, and nutrient availability, but have some common antimicrobial factors. The skin surface supports the growth of a limited range of microorganisms but provides a hostile environment for others. The growth of most microorganisms is prevented or limited by the low pH, scarcity of some nutrients such as phosphorus and the presence of antimicrobial peptides, including defensins and cathelicidins, and antimicrobial lipids, including certain fatty acids and long-chain bases. On the other hand, the oral cavity is a warm, moist, nutrient rich environment which supports the growth of diverse microflora. Saliva coating the oral soft and hard surfaces determines which microorganisms can adhere to these surfaces. Some salivary proteins bind to bacteria and prevent their attachment to surfaces. Other salivary peptides, including defensins, cathelicidins, and histatins are antimicrobial. Antimicrobial salivary proteins include lysozyme, lactoferrin, and lactoperoxidase. There are also antimicrobial fatty acids derived from salivary triglycerides and long-chain bases derived from oral epithelial sphingolipids. The various antimicrobial factors determine the microbiomes of the skin surface and the oral cavity. Alterations of these factors can result in colonization by opportunistic pathogens, and this may lead to infection. Neutrophils and lymphocytes in the connective tissue of skin and mucosa also contribute to innate immunity.
Style APA, Harvard, Vancouver, ISO itp.
22

Lyu, Wentao, Amanda Curtis, Lakshmi Sunkara i Guolong Zhang. "Transcriptional Regulation of Antimicrobial Host Defense Peptides". Current Protein & Peptide Science 16, nr 7 (10.08.2015): 672–79. http://dx.doi.org/10.2174/1389203716666150630133432.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Yan, Hong, i Robert E. W. Hancock. "Synergistic Interactions between Mammalian Antimicrobial Defense Peptides". Antimicrobial Agents and Chemotherapy 45, nr 5 (1.05.2001): 1558–60. http://dx.doi.org/10.1128/aac.45.5.1558-1560.2001.

Pełny tekst źródła
Streszczenie:
ABSTRACT A single animal can express several cationic antimicrobial peptides with different sequences and structures. We demonstrate that mammalian peptides from different structural classes frequently show synergy with each other and selectively show synergy with human lysozyme.
Style APA, Harvard, Vancouver, ISO itp.
24

Mohammed, Imran, Dalia G. Said i Harminder S. Dua. "Human antimicrobial peptides in ocular surface defense". Progress in Retinal and Eye Research 61 (listopad 2017): 1–22. http://dx.doi.org/10.1016/j.preteyeres.2017.03.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Mukherjee, S., S. Vaishnava i L. V. Hooper. "Multi-layered regulation of intestinal antimicrobial defense". Cellular and Molecular Life Sciences 65, nr 19 (17.06.2008): 3019–27. http://dx.doi.org/10.1007/s00018-008-8182-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Landman, Sanne L., Maaike E. Ressing i Annemarthe G. van der Veen. "Balancing STING in antimicrobial defense and autoinflammation". Cytokine & Growth Factor Reviews 55 (październik 2020): 1–14. http://dx.doi.org/10.1016/j.cytogfr.2020.06.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Ganz, Tomas. "Antimicrobial peptides: from host defense to therapeutics". AIDS 15 (luty 2001): S57. http://dx.doi.org/10.1097/00002030-200102001-00080.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Haine, E. R., Y. Moret, M. T. Siva-Jothy i J. Rolff. "Antimicrobial Defense and Persistent Infection in Insects". Science 322, nr 5905 (21.11.2008): 1257–59. http://dx.doi.org/10.1126/science.1165265.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Mitta, Guillaume, Franck Vandenbulcke, Florence Hubert, Michel Salzet i Philippe Roch. "Involvement of Mytilins in Mussel Antimicrobial Defense". Journal of Biological Chemistry 275, nr 17 (21.04.2000): 12954–62. http://dx.doi.org/10.1074/jbc.275.17.12954.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

D’Alba, Liliana, i Matthew D. Shawkey. "Mechanisms of antimicrobial defense in avian eggs". Journal of Ornithology 156, S1 (1.05.2015): 399–408. http://dx.doi.org/10.1007/s10336-015-1226-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Chen, Xian-Ming, Silu Deng, Ai-Yu Gong, Yang Wang, Xin-Tian Zhang, Min Li, Juan Li i Nicholas W. Mathy. "Induction of a long non-coding RNA, lncRNA-Chr1:1226, by Cryptosporidium infection primes intestinal epithelial cells for IFN-γ-mediated host antimicrobial gene transcription". Journal of Immunology 202, nr 1_Supplement (1.05.2019): 190.12. http://dx.doi.org/10.4049/jimmunol.202.supp.190.12.

Pełny tekst źródła
Streszczenie:
Abstract Cryptosporidium, a protozoan parasite that infects the intestinal epithelium and other mucosal surfaces in animals and humans, is an important opportunistic pathogen in AIDS patients and a common cause of diarrhea in young children in developing countries. Intestinal epithelial cellular defense is key to innate mucosal anti-Cryptosporidium defense but underlying molecular mechanisms are still obscure. Here, we identified several long non-coding RNAs (lncRNAs) that are predominantly expressed in intestinal epithelial cells. Several of such epithelial-enriched lncRNAs, such as lncRNA-Chr1:1226, were upregulated in cells following C. parvum infection. Induction of lncRNA-Chr1:1226 in infected intestinal epithelial cells was controlled by TLR4/NF-κB/Cdc42 signaling and epithelial specific transcription factor Eif3. Induction of lncRNA-Chr1:1226 promoted IFN-γ-mediated epithelial antimicrobial defense, through facilitating STAT1/SWI/SNF-associated chromatin remodeling to promote IFN-γ-mediated transcription of defense genes in intestinal epithelial cells. We observed that IFN-γ-mediated antimicrobial defense was suppressed in neonatal intestinal epithelium. Expression of PRDM1 in the neonatal intestinal epithelium might contribute to suppression of IFN-γ-mediated antimicrobial gene transcription. Furthermore, PRDM1 interacted with lncRNA-Chr1:1226 and PIAS1 to attenuate SWI/SNF-mediated antimicrobial transcription induced by IFN-γ in intestinal epithelium of neonates. Our data demonstrate that lncRNAs, particularly epithelial lncRNAs, may be key regulators in IFN-γ-mediated epithelial defense.
Style APA, Harvard, Vancouver, ISO itp.
32

Patel, Seema, i Nadeem Akhtar. "Antimicrobial peptides (AMPs): The quintessential ‘offense and defense’ molecules are more than antimicrobials". Biomedicine & Pharmacotherapy 95 (listopad 2017): 1276–83. http://dx.doi.org/10.1016/j.biopha.2017.09.042.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Lee, Ernest Y., Liana C. Chan, Huiyuan Wang, Juelline Lieng, Mandy Hung, Yashes Srinivasan, Jennifer Wang i in. "PACAP is a pathogen-inducible resident antimicrobial neuropeptide affording rapid and contextual molecular host defense of the brain". Proceedings of the National Academy of Sciences 118, nr 1 (28.12.2020): e1917623117. http://dx.doi.org/10.1073/pnas.1917623117.

Pełny tekst źródła
Streszczenie:
Defense of the central nervous system (CNS) against infection must be accomplished without generation of potentially injurious immune cell-mediated or off-target inflammation which could impair key functions. As the CNS is an immune-privileged compartment, inducible innate defense mechanisms endogenous to the CNS likely play an essential role in this regard. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide known to regulate neurodevelopment, emotion, and certain stress responses. While PACAP is known to interact with the immune system, its significance in direct defense of brain or other tissues is not established. Here, we show that our machine-learning classifier can screen for immune activity in neuropeptides, and correctly identified PACAP as an antimicrobial neuropeptide in agreement with previous experimental work. Furthermore, synchrotron X-ray scattering, antimicrobial assays, and mechanistic fingerprinting provided precise insights into how PACAP exerts antimicrobial activities vs. pathogens via multiple and synergistic mechanisms, including dysregulation of membrane integrity and energetics and activation of cell death pathways. Importantly, resident PACAP is selectively induced up to 50-fold in the brain in mouse models of Staphylococcus aureus or Candida albicans infection in vivo, without inducing immune cell infiltration. We show differential PACAP induction even in various tissues outside the CNS, and how these observed patterns of induction are consistent with the antimicrobial efficacy of PACAP measured in conditions simulating specific physiologic contexts of those tissues. Phylogenetic analysis of PACAP revealed close conservation of predicted antimicrobial properties spanning primitive invertebrates to modern mammals. Together, these findings substantiate our hypothesis that PACAP is an ancient neuro-endocrine-immune effector that defends the CNS against infection while minimizing potentially injurious neuroinflammation.
Style APA, Harvard, Vancouver, ISO itp.
34

Leonor Sánchez, Mercedes, Melina María Belén Martínez i Paulo César Maffia. "Natural Antimicrobial Peptides: Pleiotropic Molecules in Host Defense". CellBio 02, nr 04 (2013): 200–210. http://dx.doi.org/10.4236/cellbio.2013.24023.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Drayton, Matthew, Julia P. Deisinger, Kevin C. Ludwig, Nigare Raheem, Anna Müller, Tanja Schneider i Suzana K. Straus. "Host Defense Peptides: Dual Antimicrobial and Immunomodulatory Action". International Journal of Molecular Sciences 22, nr 20 (16.10.2021): 11172. http://dx.doi.org/10.3390/ijms222011172.

Pełny tekst źródła
Streszczenie:
The rapid rise of multidrug-resistant (MDR) bacteria has once again caused bacterial infections to become a global health concern. Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), offer a viable solution to these pathogens due to their diverse mechanisms of actions, which include direct killing as well as immunomodulatory properties (e.g., anti-inflammatory activity). HDPs may hence provide a more robust treatment of bacterial infections. In this review, the advent of and the mechanisms that lead to antibiotic resistance will be described. HDP mechanisms of antibacterial and immunomodulatory action will be presented, with specific examples of how the HDP aurein 2.2 and a few of its derivatives, namely peptide 73 and cG4L73, function. Finally, resistance that may arise from a broader use of HDPs in a clinical setting and methods to improve biocompatibility will be briefly discussed.
Style APA, Harvard, Vancouver, ISO itp.
36

Libardo, M. Daben J., i Alfredo M. Angeles-Boza. "Bioinorganic Chemistry of Antimicrobial and Host-Defense Peptides". Comments on Inorganic Chemistry 34, nr 1-2 (2.01.2014): 42–58. http://dx.doi.org/10.1080/02603594.2014.960923.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Nicolas, Pierre. "Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides". FEBS Journal 276, nr 22 (10.10.2009): 6483–96. http://dx.doi.org/10.1111/j.1742-4658.2009.07359.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

North, Robert J., Pamela L. Dunn i J. Wayne Conlan. "Murine listeriosis as a model of antimicrobial defense". Immunological Reviews 158, nr 1 (sierpień 1997): 27–36. http://dx.doi.org/10.1111/j.1600-065x.1997.tb00989.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Yeaman, Michael R. "The Role of Platelets in Antimicrobial Host Defense". Clinical Infectious Diseases 25, nr 5 (listopad 1997): 951–68. http://dx.doi.org/10.1086/516120.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Hosaka, Yoshio, Maureen Koslowski, Sabine Nuding, Guoxing Wang, Miriam Schlee, Christian Schäfer, Katunori Saigenji, Eduard F. Stange i Jan Wehkamp. "Antimicrobial host defense in the upper gastrointestinal tract". European Journal of Gastroenterology & Hepatology 20, nr 12 (grudzień 2008): 1151–58. http://dx.doi.org/10.1097/meg.0b013e3283052ddb.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Huttner, Kenneth M., i Charles L. Bevins. "Antimicrobial Peptides as Mediators of Epithelial Host Defense". Pediatric Research 45, nr 6 (czerwiec 1999): 785–94. http://dx.doi.org/10.1203/00006450-199906000-00001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Chung, Lawton K., i Manuela Raffatellu. "G.I. pros: Antimicrobial defense in the gastrointestinal tract". Seminars in Cell & Developmental Biology 88 (kwiecień 2019): 129–37. http://dx.doi.org/10.1016/j.semcdb.2018.02.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Schroder, Kate, i Vojo Deretic. "Innate immunity, the constant gardener of antimicrobial defense". Current Opinion in Microbiology 16, nr 3 (czerwiec 2013): 293–95. http://dx.doi.org/10.1016/j.mib.2013.06.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Steinstraesser, Lars, Ursula Kraneburg, Frank Jacobsen i Sammy Al-Benna. "Host defense peptides and their antimicrobial-immunomodulatory duality". Immunobiology 216, nr 3 (marzec 2011): 322–33. http://dx.doi.org/10.1016/j.imbio.2010.07.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Mehrad, Borna, i Theodore J. Standiford. "Role of cytokines in pulmonary antimicrobial host defense". Immunologic Research 20, nr 1 (sierpień 1999): 15–27. http://dx.doi.org/10.1007/bf02786504.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Schauber, Jürgen, i Richard L. Gallo. "Antimicrobial peptides and the skin immune defense system". Journal of Allergy and Clinical Immunology 122, nr 2 (sierpień 2008): 261–66. http://dx.doi.org/10.1016/j.jaci.2008.03.027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Schauber, Jürgen, i Richard L. Gallo. "Antimicrobial peptides and the skin immune defense system". Journal of Allergy and Clinical Immunology 124, nr 3 (wrzesień 2009): R13—R18. http://dx.doi.org/10.1016/j.jaci.2009.07.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Büchau, Amanda S., i Richard L. Gallo. "Innate immunity and antimicrobial defense systems in psoriasis". Clinics in Dermatology 25, nr 6 (listopad 2007): 616–24. http://dx.doi.org/10.1016/j.clindermatol.2007.08.016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Ma, Yanan, King Lam Hui, Zaza Gelashvili i Philipp Niethammer. "Oxoeicosanoid signaling mediates early antimicrobial defense in zebrafish". Cell Reports 42, nr 1 (styczeń 2023): 111974. http://dx.doi.org/10.1016/j.celrep.2022.111974.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Gross, Jürgen, Kerstin Schumacher, Henrike Schmidtberg i Andreas Vilcinskas. "Protected by Fumigants: Beetle Perfumes in Antimicrobial Defense". Journal of Chemical Ecology 34, nr 2 (31.01.2008): 179–88. http://dx.doi.org/10.1007/s10886-007-9416-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii