Gotowa bibliografia na temat „ANTIMICROBIAL DEFENSE”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „ANTIMICROBIAL DEFENSE”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "ANTIMICROBIAL DEFENSE"
Cove, Jonathan H., i E. Anne Eady. "Cutaneous antimicrobial defense". Clinics in Dermatology 16, nr 1 (styczeń 1998): 141–47. http://dx.doi.org/10.1016/s0738-081x(97)00177-6.
Pełny tekst źródłaVisan, Ioana. "Nociceptors in antimicrobial defense". Nature Immunology 21, nr 2 (24.01.2020): 103. http://dx.doi.org/10.1038/s41590-019-0586-8.
Pełny tekst źródłaMeister, Marie, Bruno Lemaitre i Jules A. Hoffmann. "Antimicrobial peptide defense inDrosophila". BioEssays 19, nr 11 (listopad 1997): 1019–26. http://dx.doi.org/10.1002/bies.950191112.
Pełny tekst źródłaCastro, Mariana, i Wagner Fontes. "Plant Defense and Antimicrobial Peptides". Protein & Peptide Letters 12, nr 1 (1.01.2005): 11–16. http://dx.doi.org/10.2174/0929866053405832.
Pełny tekst źródłaBrubaker, S. W., i D. M. Monack. "Microbial metabolite triggers antimicrobial defense". Science 348, nr 6240 (11.06.2015): 1207–8. http://dx.doi.org/10.1126/science.aac5835.
Pełny tekst źródłaBrown, Kelly L., i Robert EW Hancock. "Cationic host defense (antimicrobial) peptides". Current Opinion in Immunology 18, nr 1 (luty 2006): 24–30. http://dx.doi.org/10.1016/j.coi.2005.11.004.
Pełny tekst źródłaMukherjee, Sohini, i Lora V. Hooper. "Antimicrobial Defense of the Intestine". Immunity 42, nr 1 (styczeń 2015): 28–39. http://dx.doi.org/10.1016/j.immuni.2014.12.028.
Pełny tekst źródłaSahl, Hans Georg. "Optimizing Antimicrobial Host Defense Peptides". Chemistry & Biology 13, nr 10 (październik 2006): 1015–17. http://dx.doi.org/10.1016/j.chembiol.2006.10.001.
Pełny tekst źródłaKwiecien, Kamila, Aneta Zegar, James Jung, Piotr Brzoza, Mateusz Kwitniewski, Urszula Godlewska, Beata Grygier, Patrycja Kwiecinska, Agnieszka Morytko i Joanna Cichy. "Architecture of antimicrobial skin defense". Cytokine & Growth Factor Reviews 49 (październik 2019): 70–84. http://dx.doi.org/10.1016/j.cytogfr.2019.08.001.
Pełny tekst źródłaSimanski, Maren, Bente Köten, Jens-Michael Schröder, Regine Gläser i Jürgen Harder. "Antimicrobial RNases in Cutaneous Defense". Journal of Innate Immunity 4, nr 3 (2012): 241–47. http://dx.doi.org/10.1159/000335029.
Pełny tekst źródłaRozprawy doktorskie na temat "ANTIMICROBIAL DEFENSE"
Frohm, Nilsson Margareta. "The human antimicrobial peptide hCAP18 in epithelial defense /". Stockholm : [Karolinska institutets bibl.], 2001. http://diss.kib.ki.se/2001/91-7349-029-6/.
Pełny tekst źródłaRose-Martel, Megan. "Innate Mechanisms of Antimicrobial Defense Associated with the Avian Eggshell". Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32299.
Pełny tekst źródłaLinde, Charlotte M. A. "Defense peptides against Mycobacteria /". Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-480-5/.
Pełny tekst źródłaWang, Xinyi. "Synthesis and Characterization of Antimicrobial Polyesters by Mimicking Host Defense Peptides". University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1491508009859916.
Pełny tekst źródłaAMBIKA, KM. "ROLE OF LACTOSMART AS A NOVEL THERAPEUTIC AGENT IN ANTIMICROBIAL DEFENSE". Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18433.
Pełny tekst źródłaNegrón, Oscar A. "Fibrin(ogen)-pathogen Interactions Support Antimicrobial Host Defense following Staphylococcus Aureus Peritonitis Infection". University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin150488059846864.
Pełny tekst źródłaKrynak, Katherine L. "ENVIRONMENTAL INFLUENCES ONAMPHIBIAN INNATE IMMUNE DEFENSE TRAITS". Case Western Reserve University School of Graduate Studies / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=case1435590530.
Pełny tekst źródłaCunden, Lisa Stephanie. "A molecular investigation of the antimicrobial functions of the human S100 host-defense proteins". Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121779.
Pełny tekst źródłaCataloged from PDF version of thesis. Vita.
Includes bibliographical references.
The human host is continually exposed to potentially harmful organisms and the innate immune response is the first line of defense against microbial invasion. One strategy employed by the human innate immune system includes the release of antimicrobial host-defense proteins (HDPs). The goal of this thesis is to understand the antimicrobial functions of four host-defense proteins of the S100 family of proteins: calprotectin (CP), S100A12, S100A7, and S100A15. In the first half of this thesis, we elucidate the Zn(lI)-binding and antimicrobial properties of S100A12 and S100A7 through the use of solution and microbiology studies. We evaluate the affinity of S100A12 for Zn(ll), the scope of its antimicrobial activity, and put forward a model whereby S100A12 uses Ca(ll) ions to tune its Zn(Il)-chelating properties and antimicrobial activity. Our work with S1 00A7 demonstrates that the protein may exist in more than one redox state under physiological conditions, and that unlike CP and S100A12, the antimicrobial properties of S100A7 are not directly modulated by Ca(ll) ions. We report a model whereby the local redox environment of S100A7 tunes its Zn(ll)-sequestration capacity through intramolecular disulfide-bond redox chemistry, and that Ca(II) ions exert an indirect modulatory effect on the Zn(Il)-binding properties of this protein. In the second half of this thesis, we examine the bactericidal properties of the four S100 proteins. Our results agree with prior work on the bactericidal properties of S100A7. Furthermore, we show that CP and S100A15, but not S100A12, possess bactericidal activity at pH 5, and that CP is a broad-spectrum Gram-negative bactericidal factor that functions through a mechanism of membrane permeabilization. Taken together, our studies provide new insights into the multifunctionality of the antimicrobial S100 HDPs.
by Lisa Stephanie Cunden.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Chemistry
Vadapalli, Vatsala. "Role of N-Acylethanolamines in Plant Defense Responses: Modulation by Pathogens and Commercial Antimicrobial Stressors". Thesis, University of North Texas, 2010. https://digital.library.unt.edu/ark:/67531/metadc30521/.
Pełny tekst źródłaBurkart, David. "UNDERSTANDING CHYTRIDIOMYCOSIS RESISTANCE BY INVESTIGATING THE CUTANEOUS DEFENSE MECHANISMS OF MARSUPIAL FROGS". OpenSIUC, 2015. https://opensiuc.lib.siu.edu/theses/1835.
Pełny tekst źródłaKsiążki na temat "ANTIMICROBIAL DEFENSE"
Petrlova, Jitka, red. Antimicrobial Peptides Aka Host Defense Peptides – from Basic Research to Therapy. MDPI, 2022. http://dx.doi.org/10.3390/books978-3-0365-5820-2.
Pełny tekst źródłaHulett, Mark, Charles Lee Bevins i Thanh Kha Phan, red. Advances in The Immunology of Host Defense Peptide: Mechanisms and Applications of Antimicrobial Functions and Beyond. Frontiers Media SA, 2021. http://dx.doi.org/10.3389/978-2-88966-667-6.
Pełny tekst źródłaDepartment of Defense. 21st Century Complete Guide to the DOD Global Emerging Infections System Defense Department Surveillance and Response System (GEIS), Antimicrobial Resistance, ... Destruction WMD, First Responder CD-ROM). Progressive Management, 2004.
Znajdź pełny tekst źródłaRotstein, Ori D. Perforated viscus in the critically ill. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0185.
Pełny tekst źródłaGrabe, Magnus, i Björn Wullt. Urinary tract infection. Redaktor Rob Pickard. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199659579.003.0004.
Pełny tekst źródłaVoll, Reinhard E., i Barbara M. Bröker. Innate vs acquired immunity. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0048.
Pełny tekst źródłaCzęści książek na temat "ANTIMICROBIAL DEFENSE"
Brogden, Kim Alan, Amber M. Bates i Carol L. Fischer. "Antimicrobial Peptides in Host Defense: Functions Beyond Antimicrobial Activity". W Antimicrobial Peptides, 129–46. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24199-9_9.
Pełny tekst źródłavan t Hof, Wim, Enno C. I. Veerman, Arie V. Nieuw Amerongen i Antoon J. M. Ligtenberg. "Antimicrobial Defense Systems in Saliva". W Monographs in Oral Science, 40–51. Basel: S. KARGER AG, 2014. http://dx.doi.org/10.1159/000358783.
Pełny tekst źródłade Zamaroczy, Miklos, i Mathieu Chauleau. "Colicin Killing: Foiled Cell Defense and Hijacked Cell Functions". W Prokaryotic Antimicrobial Peptides, 255–87. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7692-5_14.
Pełny tekst źródłaGoyal, Ravinder K., i Autar K. Mattoo. "Plant Antimicrobial Peptides". W Host Defense Peptides and Their Potential as Therapeutic Agents, 111–36. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32949-9_5.
Pełny tekst źródłavan Hoek, Monique L. "Diversity in Host Defense Antimicrobial Peptides". W Host Defense Peptides and Their Potential as Therapeutic Agents, 3–26. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32949-9_1.
Pełny tekst źródłaMeister, M., C. Hetru i J. A. Hoffmann. "The Antimicrobial Host Defense of Drosophila". W Current Topics in Microbiology and Immunology, 17–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59674-2_2.
Pełny tekst źródłaMadera, Laurence, Shuhua Ma i Robert E. W. Hancock. "Host Defense (Antimicrobial) Peptides and Proteins". W The Immune Response to Infection, 57–67. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555816872.ch4.
Pełny tekst źródłaGorr, Sven-Ulrik. "Antimicrobial Peptides in Periodontal Innate Defense". W Frontiers of Oral Biology, 84–98. Basel: KARGER, 2011. http://dx.doi.org/10.1159/000329673.
Pełny tekst źródłaJames, Catherine P., i Mona Bajaj-Elliott. "Antimicrobial Peptides and Preterm Birth". W Host Defense Peptides and Their Potential as Therapeutic Agents, 293–99. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32949-9_11.
Pełny tekst źródłaAfacan, Nicole J., Laure M. Janot i Robert E. W. Hancock. "Host Defense Peptides: Immune Modulation and Antimicrobial Activity In Vivo". W Antimicrobial Peptides and Innate Immunity, 321–58. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0541-4_13.
Pełny tekst źródłaStreszczenia konferencji na temat "ANTIMICROBIAL DEFENSE"
Rolff, Jens. "Antimicrobial defense and persistent infection in insects revisited". W 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.91943.
Pełny tekst źródłaZhang, Yunsong, Yucheng Wang, Clinton K. Murray, Michael R. Hamblin, Ying Gu i Tianhong Dai. "Antimicrobial blue light therapy forCandida albicansburn infection in mice". W SPIE Defense + Security, redaktorzy Thomas George, Achyut K. Dutta i M. Saif Islam. SPIE, 2015. http://dx.doi.org/10.1117/12.2178232.
Pełny tekst źródłaVoth, S. B., S. Piechocki, M. S. Gwin, C. M. Francis i T. Stevens. "Pulmonary Endothelium Generates Antimicrobial Prions as an Innate Defense Mechanism". W American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a1984.
Pełny tekst źródłaTaitt, Chris Rowe, Tomasz Leski, David Stenger, Gary J. Vora, Brent House, Matilda Nicklasson, Guillermo Pimentel i in. "Antimicrobial resistance determinant microarray for analysis of multi-drug resistant isolates". W SPIE Defense, Security, and Sensing. SPIE, 2012. http://dx.doi.org/10.1117/12.924569.
Pełny tekst źródłaJAWAD, Israa, Adian Abd Alrazak DAKL i Hussein Jabar JASIM. "CHARACTERIZATION, MECHANISM OF ACTION, SOURCES TYPES AND USES OF THE ANTIMICROBIAL PEPTIDES IN DOMESTIC ANIMALS, REVIEW". W VII. INTERNATIONAL SCIENTIFIC CONGRESSOF PURE,APPLIEDANDTECHNOLOGICAL SCIENCES. Rimar Academy, 2023. http://dx.doi.org/10.47832/minarcongress7-13.
Pełny tekst źródłaMikhailova, A. G., Т. V. Rakitina, О. V. Shamova, М. V. Оvchinnikova i V. А. Gorlenko. "OLIGOPEPTIDSAE B AS A TOOL OF PATHOGEN MICROORGANISMS DEFENSE AGAINST ANTIMICROBIAL PEPTIDES". W MODERN PROBLEMS IN SYSTEMIC REGULATION OF PHYSIOLOGICAL FUNCTIONS. NPG Publishing, 2019. http://dx.doi.org/10.24108/5-2019-confnf-56.
Pełny tekst źródłaEarly, June, Adriana Le Van, Nelson Dozier, Sandra Waggoner, Eric Garges i Ann Jerse. "P039 A central reference laboratory for antimicrobial resistantneisseria gonorrhoeaein the us department of defense". W Abstracts for the STI & HIV World Congress (Joint Meeting of the 23rd ISSTDR and 20th IUSTI), July 14–17, 2019, Vancouver, Canada. BMJ Publishing Group Ltd, 2019. http://dx.doi.org/10.1136/sextrans-2019-sti.246.
Pełny tekst źródłaCerps, Samuel, Hamid Akbarshahi, Sangeetha Ramu, Mandy Menzel, Cecilia Andersson, Morten Hvidtfeldt, Asger Sverrild, Celeste Porsbjerg i Lena Uller. "Viral induced epithelial antimicrobial defense in human asthma may depend on HDM exposure as well as HDM atopy". W ERS International Congress 2020 abstracts. European Respiratory Society, 2020. http://dx.doi.org/10.1183/13993003.congress-2020.2041.
Pełny tekst źródłaKamareddine, Layla, Hoda Najjar, Abeer Mohbeddin, Nawar Haj Ahmed i Paula Watnick. "Between Immunity, Metabolism, and Development: A story of a Fly Gut!" W Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0141.
Pełny tekst źródłaGanapathy, Ramanan, i Ahmet Aykaç. "Depolymerisation of High Molecular Weight Chitosan and Its Impact on Purity and Deacetylation". W 6th International Students Science Congress. Izmir International Guest Student Association, 2022. http://dx.doi.org/10.52460/issc.2022.048.
Pełny tekst źródłaRaporty organizacyjne na temat "ANTIMICROBIAL DEFENSE"
Noga, Edward J., Angelo Colorni, Michael G. Levy i Ramy Avtalion. Importance of Endobiotics in Defense against Protozoan Ectoparasites of Fish. United States Department of Agriculture, wrzesień 2003. http://dx.doi.org/10.32747/2003.7586463.bard.
Pełny tekst źródłaChefetz, Benny, Baoshan Xing, Leor Eshed-Williams, Tamara Polubesova i Jason Unrine. DOM affected behavior of manufactured nanoparticles in soil-plant system. United States Department of Agriculture, styczeń 2016. http://dx.doi.org/10.32747/2016.7604286.bard.
Pełny tekst źródłaDroby, Samir, Michael Wisniewski, Martin Goldway, Wojciech Janisiewicz i Charles Wilson. Enhancement of Postharvest Biocontrol Activity of the Yeast Candida oleophila by Overexpression of Lytic Enzymes. United States Department of Agriculture, listopad 2003. http://dx.doi.org/10.32747/2003.7586481.bard.
Pełny tekst źródła