Artykuły w czasopismach na temat „Antiferroelectric materials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Antiferroelectric materials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Lu, Xue-Zeng, i James M. Rondinelli. "Hybrid improper antiferroelectricity—New insights for novel device concepts". MRS Advances 5, nr 64 (2020): 3521–45. http://dx.doi.org/10.1557/adv.2020.450.
Pełny tekst źródłaYang, Dong, Jing Gao, Liang Shu, Yi-Xuan Liu, Jingru Yu, Yuanyuan Zhang, Xuping Wang, Bo-Ping Zhang i Jing-Feng Li. "Lead-free antiferroelectric niobates AgNbO3 and NaNbO3 for energy storage applications". Journal of Materials Chemistry A 8, nr 45 (2020): 23724–37. http://dx.doi.org/10.1039/d0ta08345c.
Pełny tekst źródłaZhou, Long Jie, Georg Rixecker, André Zimmermann i Fritz Aldinger. "Composition Dependent Fatigue in Antiferroelectric PZST Ceramics Induced by Bipolar Electric Cycling". Materials Science Forum 475-479 (styczeń 2005): 1193–96. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.1193.
Pełny tekst źródłaKho, Wonwoo, Hyunjoo Hwang, Jisoo Kim, Gyuil Park i Seung-Eon Ahn. "Improvement of Resistance Change Memory Characteristics in Ferroelectric and Antiferroelectric (like) Parallel Structures". Nanomaterials 13, nr 3 (21.01.2023): 439. http://dx.doi.org/10.3390/nano13030439.
Pełny tekst źródłaCzuprynski, K., J. Gasowska, M. Tykarska, P. Kula, E. Sokól, W. Piecek, J. M. Oton i M. P. L. Castillo. "Orthoconic antiferroelectric liquid crystalline materials". Journal of Optical Technology 72, nr 9 (1.09.2005): 655. http://dx.doi.org/10.1364/jot.72.000655.
Pełny tekst źródłaChaudhary, Shristi, Sheela Devi i Shilpi Jindal. "Antiferroelectric Lead based Perovskite Material properties andapplications: A Review". E3S Web of Conferences 509 (2024): 03002. http://dx.doi.org/10.1051/e3sconf/202450903002.
Pełny tekst źródłaYin, Jia-Hang, Guo-Long Tan i Cong-Cong Duan. "Antiferroelectrics and Magnetoresistance in La0.5Sr0.5Fe12O19 Multiferroic System". Materials 16, nr 2 (4.01.2023): 492. http://dx.doi.org/10.3390/ma16020492.
Pełny tekst źródłaHu, Tengfei, Zhengqian Fu, Zhenqing Li, Ziyi Yu, Linlin Zhang, Heliang Yao, Kun Zeng i in. "Electric-induced devil’s staircase in perovskite antiferroelectric". Journal of Applied Physics 131, nr 21 (7.06.2022): 214105. http://dx.doi.org/10.1063/5.0094919.
Pełny tekst źródłaShan, Pai, i Xifa Long. "Symmetry of antiferroelectric crystals crystallized in polar point groups". IUCrJ 9, nr 4 (28.06.2022): 516–22. http://dx.doi.org/10.1107/s2052252522006017.
Pełny tekst źródłaChattopadhyay, Soma, Pushan Ayyub, R. Pinto i M. S. Multani. "Synthesis of thin films of polycrystalline ferroelectric BiNbO4 on Si by pulsed laser ablation". Journal of Materials Research 13, nr 5 (maj 1998): 1113–16. http://dx.doi.org/10.1557/jmr.1998.0155.
Pełny tekst źródłaAstafev, Pavel, Aleksey Pavelko, Konstantin Andryushin, Alexander Lerer, Jakov Reizenkind i Larisa Reznichenko. "Microwave Electrodynamic Study on Antiferroelectric Materials in a Wide Temperature Range". Materials 15, nr 24 (10.12.2022): 8834. http://dx.doi.org/10.3390/ma15248834.
Pełny tekst źródłaPan, Tianze, Ji Zhang, Dongxiao Che, Zhengyu Wang, Jiajia Wang, Jing Wang i Yaojin Wang. "Improved capacitive energy storage in sodium niobate-based relaxor antiferroelectric ceramics". Applied Physics Letters 122, nr 7 (13.02.2023): 072902. http://dx.doi.org/10.1063/5.0134282.
Pełny tekst źródłaViehland, Dwight, Z. Xu i X. H. Dai. "TEM studies of modified lead zirconate titanate ceramics". Proceedings, annual meeting, Electron Microscopy Society of America 52 (1994): 552–53. http://dx.doi.org/10.1017/s0424820100170499.
Pełny tekst źródłaSoumahoro, K., i J. Pouget. "Electroacoustic properties for deformable antiferroelectric materials". Journal of the Acoustical Society of America 96, nr 6 (grudzień 1994): 3558–67. http://dx.doi.org/10.1121/1.411458.
Pełny tekst źródłaDąbrowski, R., J. Gąsowska, J. Otón, W. Piecek, J. Przedmojski i M. Tykarska. "High tilted antiferroelectric liquid crystalline materials". Displays 25, nr 1 (maj 2004): 9–19. http://dx.doi.org/10.1016/j.displa.2004.04.002.
Pełny tekst źródłaGao, Jing, Wei Li, Jue Liu, Qian Li i Jing-Feng Li. "Local Atomic Configuration in Pristine and A-Site Doped Silver Niobate Perovskite Antiferroelectrics". Research 2022 (25.02.2022): 1–10. http://dx.doi.org/10.34133/2022/9782343.
Pełny tekst źródłaWang, Erping, Liqin Yue, Yuanhong Chu, Caixia Sun, Jinyu Zhao, Siyu Zhang, Jiale Liu, Yangyang Zhang i Ling Zhang. "High Energy Storage Performance in Pb1−xLax(Hf0.45Sn0.55)0.995O3 Antiferroelectric Ceramics". Crystals 14, nr 8 (17.08.2024): 732. http://dx.doi.org/10.3390/cryst14080732.
Pełny tekst źródłaXu, Z., Dwight Viehland i D. A. Payne. "An incommensurate-commensurate phase transformation in antiferroelectric tin-modified lead zirconate titanate". Journal of Materials Research 10, nr 2 (luty 1995): 453–60. http://dx.doi.org/10.1557/jmr.1995.0453.
Pełny tekst źródłaAn, Kun, Xuechen Jin, Jiang Meng, Xiao Li i Yifeng Ren. "Frequency Invariability of (Pb,La)(Zr,Ti)O3 Antiferroelectric Thick-Film Micro-Cantilevers". Sensors 18, nr 5 (13.05.2018): 1542. http://dx.doi.org/10.3390/s18051542.
Pełny tekst źródłaYu, Huifen, Liang Chen, Chang Zhou i He Qi. "Negative Thermal Expansion Caused by the Antiferroelectric Phase Transition in Lead-Free Perovskite Ceramics". Crystals 13, nr 5 (1.05.2023): 751. http://dx.doi.org/10.3390/cryst13050751.
Pełny tekst źródłaNishiyama, Isa. "Antiferroelectric liquid crystals". Advanced Materials 6, nr 12 (grudzień 1994): 966–70. http://dx.doi.org/10.1002/adma.19940061215.
Pełny tekst źródłaMa, Qingzhu, Xiang Li, Yanle Zhang, Zhijin Duo, Suwei Zhang i Lei Zhao. "Dielectric and Antiferroelectric Properties of AgNbO3 Films Deposited on Different Electrodes". Coatings 12, nr 12 (25.11.2022): 1826. http://dx.doi.org/10.3390/coatings12121826.
Pełny tekst źródłaApachitei, Geanina, Jonathan J. P. Peters, Ana M. Sanchez, Dong Jik Kim i Marin Alexe. "Antiferroelectric Tunnel Junctions". Advanced Electronic Materials 3, nr 7 (15.05.2017): 1700126. http://dx.doi.org/10.1002/aelm.201700126.
Pełny tekst źródłaBooth, Christopher J., David A. Dunmur, John W. Goodby, Julie Haley i Kenneth J. Toyne. "Achiral swallow-tailed materials with ‘antiferroelectric-like’ structure and their potential use in antiferroelectric mixtures". Liquid Crystals 20, nr 4 (kwiecień 1996): 387–92. http://dx.doi.org/10.1080/02678299608032051.
Pełny tekst źródłaYang, Yu Hua, Zhen Yu Zhao, Xin Feng Guan i Xiu Jian Chou. "Microcantilevers Fabrication Process of Silicon-Based (Pb, La)(Zr, Ti)O3 Antiferroelectric Thick Films for Microactuator Applications". Applied Mechanics and Materials 80-81 (lipiec 2011): 13–17. http://dx.doi.org/10.4028/www.scientific.net/amm.80-81.13.
Pełny tekst źródłaCastillo, Pilar, Xabier Quintana, José Otón, Roman i Marek Filipowicz. "Evaluation of Orthoconic Antiferroelectric Materials for Photonic Applications". Molecular Crystals and Liquid Crystals 422, nr 1 (styczeń 2004): 65–71. http://dx.doi.org/10.1080/15421400490502076.
Pełny tekst źródłaAyyub, Pushan, Soma Chattopadhyay, R. Pinto i M. S. Multani. "Ferroelectric behavior in thin films of antiferroelectric materials". Physical Review B 57, nr 10 (1.03.1998): R5559—R5562. http://dx.doi.org/10.1103/physrevb.57.r5559.
Pełny tekst źródłaChattopadhyay, Soma. "Finite size effects in ferroelectric and antiferroelectric materials". Nanostructured Materials 9, nr 1-8 (styczeń 1997): 551–54. http://dx.doi.org/10.1016/s0965-9773(97)00122-0.
Pełny tekst źródłaLi, Song, Hengchang Nie, Genshui Wang, Ningtao Liu, Mingxing Zhou, Fei Cao i Xianlin Dong. "Novel AgNbO3-based lead-free ceramics featuring excellent pyroelectric properties for infrared detecting and energy-harvesting applications via antiferroelectric/ferroelectric phase-boundary design". Journal of Materials Chemistry C 7, nr 15 (2019): 4403–14. http://dx.doi.org/10.1039/c9tc01014a.
Pełny tekst źródłaTan, Qi, Z. Xu i Dwight Viehland. "Effect of substituents with different valences on antiferroelectric stability of antiferroelectric lead zirconate ceramics". Journal of Materials Research 14, nr 11 (listopad 1999): 4251–58. http://dx.doi.org/10.1557/jmr.1999.0576.
Pełny tekst źródłaFu, Zhengqian, Xuefeng Chen, Henchang Nie, Linlin Zhang, Zhenqin Li, Ping Lu, Genshui Wang, Xianlin Dong i Fangfang Xu. "Grinding strain induced antiferroelectric-ferroelectric-antiferroelectric sandwich structure in bulk ceramics". Scripta Materialia 182 (czerwiec 2020): 27–31. http://dx.doi.org/10.1016/j.scriptamat.2020.02.040.
Pełny tekst źródłaXu, Zhen, i Guo-Long Tan. "Full Antiferroelectric Performance and GMR Effect in Multiferroic La0.75Ba0.25Fe12O19 Ceramic". Applied Sciences 13, nr 9 (5.05.2023): 5718. http://dx.doi.org/10.3390/app13095718.
Pełny tekst źródłaSaha, Rony, Chenrun Feng, Alexey Eremin i Antal Jákli. "Antiferroelectric Bent-Core Liquid Crystal for Possible High-Power Capacitors and Electrocaloric Devices". Crystals 10, nr 8 (30.07.2020): 652. http://dx.doi.org/10.3390/cryst10080652.
Pełny tekst źródłaWu, Longwen, Guitian Lan, Ziming Cai, Lihua Zhao, Jian Lu i Xiaohui Wang. "Concurrent achievement of giant energy density and ultrahigh efficiency in antiferroelectric ceramics via core–shell structure design". Applied Physics Letters 120, nr 17 (25.04.2022): 172902. http://dx.doi.org/10.1063/5.0088282.
Pełny tekst źródłaCORKOVIC, S., i Q. ZHANG. "CORRELATION BETWEEN CRITICAL COERCIVE FIELD AND RESIDUAL STRESS IN ANTIFERROELECTRIC PZT 95/05 FILMS". Functional Materials Letters 01, nr 01 (czerwiec 2008): 13–18. http://dx.doi.org/10.1142/s1793604708000046.
Pełny tekst źródłaTyunina, M., A. Dejneka, D. Rytz, I. Gregora, F. Borodavka, M. Vondracek i J. Honolka. "Ferroelectricity in antiferroelectric NaNbO3crystal". Journal of Physics: Condensed Matter 26, nr 12 (4.03.2014): 125901. http://dx.doi.org/10.1088/0953-8984/26/12/125901.
Pełny tekst źródłaKania, A., i J. Kwapulinski. "Ag1-xNaxNbO3(ANN) solid solutions: from disordered antiferroelectric AgNbO3to normal antiferroelectric NaNbO3". Journal of Physics: Condensed Matter 11, nr 45 (27.10.1999): 8933–46. http://dx.doi.org/10.1088/0953-8984/11/45/316.
Pełny tekst źródłaHu, Tengfei, Zhengqian Fu, Zhenqin Li, Meng Liu, Linlin Zhang, Ziyi Yu, Xuefeng Chen i in. "Decoding the Double/Multiple Hysteresis Loops in Antiferroelectric Materials". ACS Applied Materials & Interfaces 13, nr 50 (9.12.2021): 60241–49. http://dx.doi.org/10.1021/acsami.1c19459.
Pełny tekst źródłaZhou, Ziyao, Qu Yang, Ming Liu, Zhiguo Zhang, Xinyang Zhang, Dazhi Sun, Tianxiang Nan, Nianxiang Sun i Xing Chen. "Antiferroelectric Materials, Applications and Recent Progress on Multiferroic Heterostructures". SPIN 05, nr 01 (marzec 2015): 1530001. http://dx.doi.org/10.1142/s2010324715300017.
Pełny tekst źródłaSzarek, Michał, Ewa Topyła, Ewelina Dmochowska i Michał Czerwiński. "Influence of the polymer network on the stability of the heliconical structure in the ferro- and antiferroelectric liquid crystalline phases". Bulletin of the Military University of Technology 72, nr 4 (30.12.2023): 55–72. http://dx.doi.org/10.5604/01.3001.0054.7911.
Pełny tekst źródłaArtal, M. Carmen, M. Blanca Ros, José Luis Serrano, M. Rosario de la Fuente i Miguel Angel Pérez-Jubindo. "Antiferroelectric Liquid-Crystal Gels". Chemistry of Materials 13, nr 6 (czerwiec 2001): 2056–67. http://dx.doi.org/10.1021/cm001254m.
Pełny tekst źródłaRudquist, Per. "Orthoconic antiferroelectric liquid crystals". Liquid Crystals 40, nr 12 (grudzień 2013): 1678–97. http://dx.doi.org/10.1080/02678292.2013.828331.
Pełny tekst źródłaKłosowicz, Stanisław, i Krzysztof Czuprynski. "Electrooptics of Antiferroelectric PDLC". Molecular Crystals and Liquid Crystals 375 (2002): 195–204. http://dx.doi.org/10.1080/713738366.
Pełny tekst źródłaYang, Jae Ho, Hyo Jin Kim, Woong Kil Choo i Chong Tak Lee. "Antiferroelectric superstructures of Pb2MgWO6". Ferroelectrics 152, nr 1 (luty 1994): 243–48. http://dx.doi.org/10.1080/00150199408017627.
Pełny tekst źródłaKundu, Shyamal Kumar, Y. Aoki i B. K. Chaudhuri. "Dielectric spectroscopy of an antiferroelectric liquid crystal showing an antiferroelectric–ferrielectric transition". Liquid Crystals 31, nr 6 (1.06.2004): 787–90. http://dx.doi.org/10.1080/02678290410001666057.
Pełny tekst źródłaShen, Bingzhong, Yong Li, Ningning Sun, Ye Zhao i Xihong Hao. "Enhanced energy-storage performance of an all-inorganic flexible bilayer-like antiferroelectric thin film via using electric field engineering". Nanoscale 12, nr 16 (2020): 8958–68. http://dx.doi.org/10.1039/c9nr10616b.
Pełny tekst źródłaGuo, Mengyao, Ming Wu, Weiwei Gao, Buwei Sun i Xiaojie Lou. "Giant negative electrocaloric effect in antiferroelectric PbZrO3 thin films in an ultra-low temperature range". Journal of Materials Chemistry C 7, nr 3 (2019): 617–21. http://dx.doi.org/10.1039/c8tc05108a.
Pełny tekst źródłaEliseev, E. A., M. D. Glinchuk i A. N. Morozovska. "Antiferroelectric thin films phase diagrams". Phase Transitions 80, nr 1-2 (styczeń 2007): 47–54. http://dx.doi.org/10.1080/01411590601092654.
Pełny tekst źródłaCzupryński, K., K. Skrzypek, M. Tykarska i W. Piecek. "Properties of induced antiferroelectric phase". Phase Transitions 80, nr 6-7 (czerwiec 2007): 735–44. http://dx.doi.org/10.1080/01411590701340243.
Pełny tekst źródłaHanrahan, Brendan, Yomery Espinal, Shi Liu, Zeyu Zhang, Alireza Khaligh, Andrew Smith i S. Pamir Alpay. "Combining inverse and conventional pyroelectricity in antiferroelectric thin films for energy conversion". Journal of Materials Chemistry C 6, nr 36 (2018): 9828–34. http://dx.doi.org/10.1039/c8tc02686f.
Pełny tekst źródła