Artykuły w czasopismach na temat „Antibody recognition”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Antibody recognition.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Antibody recognition”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Janin, J., J. Cherfils i S. Duquerroy. "Simulating antigen-antibody recognition". Acta Crystallographica Section A Foundations of Crystallography 49, s1 (21.08.1993): c148. http://dx.doi.org/10.1107/s0108767378095793.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

MacRaild, Christopher A., Jack S. Richards, Robin F. Anders i Raymond S. Norton. "Antibody Recognition of Disordered Antigens". Structure 24, nr 1 (styczeń 2016): 148–57. http://dx.doi.org/10.1016/j.str.2015.10.028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Haji-Ghassemi, Omid, Ryan J. Blackler, N. Martin Young i Stephen V. Evans. "Antibody recognition of carbohydrate epitopes". Glycobiology 25, nr 9 (1.06.2015): 920–52. http://dx.doi.org/10.1093/glycob/cwv037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Zhou, T., D. H. Hamer, W. A. Hendrickson, Q. J. Sattentau i P. D. Kwong. "Interfacial metal and antibody recognition". Proceedings of the National Academy of Sciences 102, nr 41 (29.09.2005): 14575–80. http://dx.doi.org/10.1073/pnas.0507267102.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Nauchitel, Vladimir V., i Rajmund L. Somorjai. "Antigen-antibody recognition. Model calculations". Biophysical Chemistry 51, nr 2-3 (sierpień 1994): 337–47. http://dx.doi.org/10.1016/0301-4622(94)00054-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Nandakumar, Kutty Selva. "Pathogenic antibody recognition of cartilage". Cell and Tissue Research 339, nr 1 (9.06.2009): 213–20. http://dx.doi.org/10.1007/s00441-009-0816-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Smith, Thomas J. "Introduction: Antibody recognition of viruses". Seminars in Virology 6, nr 4 (sierpień 1995): 217–18. http://dx.doi.org/10.1006/smvy.1995.0026.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Thornthwaite, Jerry T., Emily C. McDuffee, Robert B. Harris, Julie R. Secor McVoy i I. W. Lane. "The cancer recognition (CARE) antibody test". Cancer Letters 216, nr 2 (grudzień 2004): 227–41. http://dx.doi.org/10.1016/s0304-3835(03)00161-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Wu, Nicholas C., i Ian A. Wilson. "Influenza Hemagglutinin Structures and Antibody Recognition". Cold Spring Harbor Perspectives in Medicine 10, nr 8 (23.12.2019): a038778. http://dx.doi.org/10.1101/cshperspect.a038778.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

KOBAYASHI, Norihiro, i Junichi GOTO. "Antibody Engineering for Advanced Molecular Recognition". YAKUGAKU ZASSHI 127, nr 1 (1.01.2007): 41–42. http://dx.doi.org/10.1248/yakushi.127.41.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Raab, Anneliese, Wenhai Han, Dirk Badt, Sandra J. Smith-Gill, Stuart M. Lindsay, Hansgeorg Schindler i Peter Hinterdorfer. "Antibody recognition imaging by force microscopy". Nature Biotechnology 17, nr 9 (wrzesień 1999): 901–5. http://dx.doi.org/10.1038/12898.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Peroni, Elisa, Feliciana Real Fernández, Caterina Gheri, Francesca Nuti, Anne-Claire Mitaine-Offer, Francesco Lolli, Marie-Aleth Lacaille-Dubois i Anna-Maria Papini. "Natural Triterpene Glycosides for Antibody Recognition". Planta Medica Letters 3, nr 01 (5.02.2016): e2-e7. http://dx.doi.org/10.1055/s-0035-1568263.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Huber, R. "Structural basis for antigen-antibody recognition". Science 233, nr 4765 (15.08.1986): 702–3. http://dx.doi.org/10.1126/science.2426777.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Ahluwalia, A., D. De Rossi i A. Schirone. "Antigen recognition properties of antibody monolayers". Thin Solid Films 210-211 (kwiecień 1992): 726–29. http://dx.doi.org/10.1016/0040-6090(92)90386-p.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Van Regenmortel, M. H. V. "Structural aspects of antigen-antibody recognition". Journal of Molecular Graphics 4, nr 4 (grudzień 1986): 229–30. http://dx.doi.org/10.1016/0263-7855(86)80060-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Makabe, Koki. "Molecular basis of flexible peptide recognition by an antibody". Journal of Biochemistry 167, nr 4 (6.02.2020): 343–45. http://dx.doi.org/10.1093/jb/mvaa017.

Pełny tekst źródła
Streszczenie:
Abstract Antibodies can recognize various types of antigens with high specificity and affinity and peptide is one of their major targets. Understanding an antibody’s molecular recognition mechanism for peptide is important for developing clones with a higher specificity and affinity. Here, the author reviews recent progresses in flexible peptide recognition by an antibody using several biophysical techniques, including X-ray crystallography, molecular dynamics simulations and calorimetric measurements. A set of two reports highlight the importance of intramolecular hydrogen bonds that form in an unbound flexible state. Such intramolecular hydrogen bonds restrict the fluctuation of the peptide and reduce the conformational entropy, resulting in the destabilization of the unbound state and increasing the binding affinity by increasing the free energy change. These detailed analyses will aid in the antibody design in the future.
Style APA, Harvard, Vancouver, ISO itp.
17

Reindl, Maximilian, i Anja Hoffmann-Roder. "Antibody Recognition of Fluorinated Haptens and Antigens". Current Topics in Medicinal Chemistry 14, nr 7 (31.03.2014): 840–54. http://dx.doi.org/10.2174/1568026614666140202203811.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Sun, M., L. Li, Q. S. Gao i S. Paul. "Antigen recognition by an antibody light chain." Journal of Biological Chemistry 269, nr 1 (styczeń 1994): 734–38. http://dx.doi.org/10.1016/s0021-9258(17)42411-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Mariuzza, R. A., S. E. V. Phillips i R. J. Poljak. "The Structural Basis of Antigen-Antibody Recognition". Annual Review of Biophysics and Biophysical Chemistry 16, nr 1 (czerwiec 1987): 139–59. http://dx.doi.org/10.1146/annurev.bb.16.060187.001035.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Krauss, Isaac J. "Antibody recognition of HIV and dengue glycoproteins". Glycobiology 26, nr 8 (3.03.2016): 813–19. http://dx.doi.org/10.1093/glycob/cww031.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Oberbillig, Thomas, Christian Mersch, Sarah Wagner i Anja Hoffmann-Röder. "Antibody recognition of fluorinated MUC1 glycopeptide antigens". Chem. Commun. 48, nr 10 (2012): 1487–89. http://dx.doi.org/10.1039/c1cc15139h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Olivier, Gloria K., Andrew Cho, Babak Sanii, Michael D. Connolly, Helen Tran i Ronald N. Zuckermann. "Antibody-Mimetic Peptoid Nanosheets for Molecular Recognition". ACS Nano 7, nr 10 (18.09.2013): 9276–86. http://dx.doi.org/10.1021/nn403899y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Nguyen, Hoa P., Nina O. L. Seto, C. Roger MacKenzie, Lore Brade, Paul Kosma, Helmut Brade i Stephen V. Evans. "Germline antibody recognition of distinct carbohydrate epitopes". Nature Structural & Molecular Biology 10, nr 12 (16.11.2003): 1019–25. http://dx.doi.org/10.1038/nsb1014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Air, G. M., W. G. Laver, R. G. Webster, M. C. Els i M. Luo. "Antibody Recognition of the Influenza Virus Neuraminidase". Cold Spring Harbor Symposia on Quantitative Biology 54 (1.01.1989): 247–55. http://dx.doi.org/10.1101/sqb.1989.054.01.031.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Peroni, E., F. Real Fernández, C. Gheri, F. Nuti, AC Mitaine-Offer, F. Lolli, MA Lacaille-Dubois i AM Papini. "Triterpene glycosides from plants for antibody recognition". Planta Medica 81, S 01 (14.12.2016): S1—S381. http://dx.doi.org/10.1055/s-0036-1596483.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Walker-Simmons, Mary K., Martin J. T. Reaney, Stephen A. Quarrie, Pierdomenico Perata, Paolo Vernieri i Suzanne R. Abrams. "Monoclonal Antibody Recognition of Abscisic Acid Analogs". Plant Physiology 95, nr 1 (1.01.1991): 46–51. http://dx.doi.org/10.1104/pp.95.1.46.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Targoff, Ira N., Arthur E. Johnson i Frederick W. Miller. "Antibody to signal recognition particle in polymyositis". Arthritis & Rheumatism 33, nr 9 (wrzesień 1990): 1361–70. http://dx.doi.org/10.1002/art.1780330908.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Davies, Julian, i Lutz Riechmann. "Antibody VH Domains as Small Recognition Units". Nature Biotechnology 13, nr 5 (maj 1995): 475–79. http://dx.doi.org/10.1038/nbt0595-475.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Addis, Philip W., Catherine J. Hall, Shaun Bruton, Vaclav Veverka, Ian C. Wilkinson, Frederick W. Muskett, Philip S. Renshaw i in. "Conformational Heterogeneity in Antibody-Protein Antigen Recognition". Journal of Biological Chemistry 289, nr 10 (16.01.2014): 7200–7210. http://dx.doi.org/10.1074/jbc.m113.492215.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Robinson, M. T., V. N. Schumaker, R. Butler, K. Berg i L. K. Curtiss. "Ag(c): recognition by a monoclonal antibody." Arteriosclerosis: An Official Journal of the American Heart Association, Inc. 6, nr 3 (maj 1986): 341–44. http://dx.doi.org/10.1161/01.atv.6.3.341.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Lara-Ochoa, Francisco, Juan C. Almagro, Enrique Vargas-Madrazo i Michael Conrad. "Antibody-antigen recognition: A canonical structure paradigm". Journal of Molecular Evolution 43, nr 6 (grudzień 1996): 678–84. http://dx.doi.org/10.1007/bf02202116.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Passalacqua, Karla D., i Mary X. O’Riordan. "MRSA in Stealth Mode Evades Antibody Recognition". Trends in Immunology 40, nr 2 (luty 2019): 85–87. http://dx.doi.org/10.1016/j.it.2018.12.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Joshi, Rajani R. "A probabilistic approach to antigen-antibody recognition". Mathematical and Computer Modelling 15, nr 12 (1991): 91–102. http://dx.doi.org/10.1016/0895-7177(91)90044-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Skerra, Arne. "Alternative non-antibody scaffolds for molecular recognition". Current Opinion in Biotechnology 18, nr 4 (sierpień 2007): 295–304. http://dx.doi.org/10.1016/j.copbio.2007.04.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Zhang, Mingzhen, Jie Zheng, Ruth Nussinov i Buyong Ma. "Molecular Recognition between Aβ-Specific Single-Domain Antibody and Aβ Misfolded Aggregates". Antibodies 7, nr 3 (13.07.2018): 25. http://dx.doi.org/10.3390/antib7030025.

Pełny tekst źródła
Streszczenie:
Aβ is the toxic amyloid polypeptide responsible for Alzheimer’s disease (AD). Prevention and elimination of the Aβ misfolded aggregates are the promising therapeutic strategies for the AD treatments. Gammabody, the Aβ-Specific Single-domain (VH) antibody, recognizes Aβ aggregates with high affinity and specificity and reduces their toxicities. Employing the molecular dynamics simulations, we studied diverse gammabody-Aβ recognition complexes to get insights into their structural and dynamic properties and gammabody-Aβ recognitions. Among many heterogeneous binding modes, we focused on two gammabody-Aβ recognition scenarios: recognition through Aβ β-sheet backbone and on sidechain surface. We found that the gammabody primarily uses the complementarity-determining region 3 (CDR3) loop with the grafted Aβ sequence to interact with the Aβ fibril, while CDR1/CDR2 loops have very little contact. The gammabody-Aβ complexes with backbone binding mode are more stable, explaining the gammabody’s specificity towards the C-terminal Aβ sequence.
Style APA, Harvard, Vancouver, ISO itp.
36

Pierce, Brian G., Zhen-Yong Keck, Patrick Lau, Catherine Fauvelle, Ragul Gowthaman, Thomas F. Baumert, Thomas R. Fuerst, Roy A. Mariuzza i Steven K. H. Foung. "Global mapping of antibody recognition of the hepatitis C virus E2 glycoprotein: Implications for vaccine design". Proceedings of the National Academy of Sciences 113, nr 45 (26.10.2016): E6946—E6954. http://dx.doi.org/10.1073/pnas.1614942113.

Pełny tekst źródła
Streszczenie:
The E2 envelope glycoprotein is the primary target of human neutralizing antibody response against hepatitis C virus (HCV), and is thus a major focus of vaccine and immunotherapeutics efforts. There is emerging evidence that E2 is a highly complex, dynamic protein with residues across the protein that are modulating antibody recognition, local and global E2 stability, and viral escape. To comprehensively map these determinants, we performed global E2 alanine scanning with a panel of 16 human monoclonal antibodies (hmAbs), resulting in an unprecedented dataset of the effects of individual alanine substitutions across the E2 protein (355 positions) on antibody recognition. Analysis of shared energetic effects across the antibody panel identified networks of E2 residues involved in antibody recognition and local and global E2 stability, as well as predicted contacts between residues across the entire E2 protein. Further analysis of antibody binding hotspot residues defined groups of residues essential for E2 conformation and recognition for all 14 conformationally dependent E2 antibodies and subsets thereof, as well as residues that enhance antibody recognition when mutated to alanine, providing a potential route to engineer E2 vaccine immunogens. By incorporating E2 sequence variability, we found a number of E2 polymorphic sites that are responsible for loss of neutralizing antibody binding. These data and analyses provide fundamental insights into antibody recognition of E2, highlighting the dynamic and complex nature of this viral envelope glycoprotein, and can serve as a reference for development and rational design of E2-targeting vaccines and immunotherapeutics.
Style APA, Harvard, Vancouver, ISO itp.
37

YASUKAWA, Tomoyuki. "Biosensors Using an Antibody as a Recognition Element". Analytical Sciences 35, nr 4 (10.04.2019): 359–60. http://dx.doi.org/10.2116/analsci.highlights1904.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Perl-Treves, Daniele, Naama Kessler, David Izhaky i Lia Addadi. "Monoclonal antibody recognition of cholesterol monohydrate crystal faces". Chemistry & Biology 3, nr 7 (lipiec 1996): 567–77. http://dx.doi.org/10.1016/s1074-5521(96)90148-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Soliman, Caroline, Gerald B. Pier i Paul A. Ramsland. "Antibody recognition of bacterial surfaces and extracellular polysaccharides". Current Opinion in Structural Biology 62 (czerwiec 2020): 48–55. http://dx.doi.org/10.1016/j.sbi.2019.12.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Fraser, P. E., L. K. Duffy, M. B. O'Malley, J. Nguyen, H. Inouye i D. A. Kirschner. "Morphology and antibody recognition of synthetic ?-amyloid peptides". Journal of Neuroscience Research 28, nr 4 (kwiecień 1991): 474–85. http://dx.doi.org/10.1002/jnr.490280404.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Van Regenmortel, Marc H. V. "Specificity, polyspecificity, and heterospecificity of antibody-antigen recognition". Journal of Molecular Recognition 27, nr 11 (8.09.2014): 627–39. http://dx.doi.org/10.1002/jmr.2394.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Kado, Yuji, Eiichi Mizohata, Satoru Nagatoishi, Mariko Iijima, Keiko Shinoda, Takamitsu Miyafusa, Taisuke Nakayama i in. "Epiregulin Recognition Mechanisms by Anti-epiregulin Antibody 9E5". Journal of Biological Chemistry 291, nr 5 (1.12.2015): 2319–30. http://dx.doi.org/10.1074/jbc.m115.656009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Haji-Ghassemi, Omid, Sven Müller-Loennies, Teresa Rodriguez, Lore Brade, Paul Kosma, Helmut Brade i Stephen V. Evans. "Structural Basis for Antibody Recognition of Lipid A". Journal of Biological Chemistry 290, nr 32 (17.06.2015): 19629–40. http://dx.doi.org/10.1074/jbc.m115.657874.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Persson, Helena, Johan Lantto i Mats Ohlin. "A Focused Antibody Library for Improved Hapten Recognition". Journal of Molecular Biology 357, nr 2 (marzec 2006): 607–20. http://dx.doi.org/10.1016/j.jmb.2006.01.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Sai, Na, Zhong Sun, Yuntang Wu i Guowei Huang. "Antibody recognition by a novel microgel photonic crystal". Bioorganic Chemistry 84 (marzec 2019): 389–93. http://dx.doi.org/10.1016/j.bioorg.2018.12.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Murase, Tomohiko, Ruixiang Blake Zheng, Maju Joe, Yu Bai, Sandra L. Marcus, Todd L. Lowary i Kenneth K. S. Ng. "Structural Insights into Antibody Recognition of Mycobacterial Polysaccharides". Journal of Molecular Biology 392, nr 2 (wrzesień 2009): 381–92. http://dx.doi.org/10.1016/j.jmb.2009.06.074.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Lee, Chang Hwan, Yoonhyoung Lee i Kyungil Kim. "The Role of Antibody in Korean Word Recognition". Journal of Psycholinguistic Research 39, nr 5 (30.06.2010): 457–64. http://dx.doi.org/10.1007/s10936-010-9154-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Sohma, Yoshinori, Ryoji Fujita, Shigeo Katoh i Eizo Sada. "Recognition of liposome-bound antigens by antipeptide antibody". Applied Biochemistry and Biotechnology 38, nr 3 (marzec 1993): 179–88. http://dx.doi.org/10.1007/bf02916399.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Tramontano, Alfonso. "Immune recognition, antigen design, and catalytic antibody production". Applied Biochemistry and Biotechnology 47, nr 2-3 (maj 1994): 257–75. http://dx.doi.org/10.1007/bf02787939.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Ferrigno, Paul Ko. "Non-antibody protein-based biosensors". Essays in Biochemistry 60, nr 1 (30.06.2016): 19–25. http://dx.doi.org/10.1042/ebc20150003.

Pełny tekst źródła
Streszczenie:
Biosensors that depend on a physical or chemical measurement can be adversely affected by non-specific interactions. For example, a biosensor designed to measure specifically the levels of a rare analyte can give false positive results if there is even a small amount of interaction with a highly abundant but irrelevant molecule. To overcome this limitation, the biosensor community has frequently turned to antibody molecules as recognition elements because they are renowned for their exquisite specificity. Unfortunately antibodies can often fail when immobilised on inorganic surfaces, and alternative biological recognition elements are needed. This article reviews the available non-antibody-binding proteins that have been successfully used in electrical and micro-mechanical biosensor platforms.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii