Artykuły w czasopismach na temat „Antibacterial therapeutics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Antibacterial therapeutics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
KUREK, ANNA, ANNA M. GRUDNIAK, ANNA KRACZKIEWICZ-DOWJAT i KRYSTYNA I. WOLSKA. "New Antibacterial Therapeutics and Strategies". Polish Journal of Microbiology 60, nr 1 (2011): 3–12. http://dx.doi.org/10.33073/pjm-2011-001.
Pełny tekst źródłaKern, Thomas J. "Antibacterial agents for ocular therapeutics". Veterinary Clinics of North America: Small Animal Practice 34, nr 3 (maj 2004): 655–68. http://dx.doi.org/10.1016/j.cvsm.2003.12.010.
Pełny tekst źródłaLiu, Shanshan, Huanxiang Yuan, Haotian Bai, Pengbo Zhang, Fengting Lv, Libing Liu, Zhihui Dai, Jianchun Bao i Shu Wang. "Electrochemiluminescence for Electric-Driven Antibacterial Therapeutics". Journal of the American Chemical Society 140, nr 6 (5.02.2018): 2284–91. http://dx.doi.org/10.1021/jacs.7b12140.
Pełny tekst źródłaNagaraj, Nagathihalli S., i Om V. Singh. "Using Genomics to Develop Novel Antibacterial Therapeutics". Critical Reviews in Microbiology 36, nr 4 (29.07.2010): 340–48. http://dx.doi.org/10.3109/1040841x.2010.495941.
Pełny tekst źródłaAllafchian, Alireza, i Seyed Sajjad Hosseini. "Antibacterial magnetic nanoparticles for therapeutics: a review". IET Nanobiotechnology 13, nr 8 (29.08.2019): 786–99. http://dx.doi.org/10.1049/iet-nbt.2019.0146.
Pełny tekst źródłaGill, Jason J., Taras Hollyer i Parviz M. Sabour. "Bacteriophages and phage-derived products as antibacterial therapeutics". Expert Opinion on Therapeutic Patents 17, nr 11 (listopad 2007): 1341–50. http://dx.doi.org/10.1517/13543776.17.11.1341.
Pełny tekst źródłaMatthews, Liam, Rupinder K. Kanwar, Shufeng Zhou, Vasu Punj i Jagat R. Kanwar. "Applications of Nanomedicine in Antibacterial Medical Therapeutics and Diagnostics". Open Tropical Medicine Journal 3, nr 1 (24.02.2010): 1–9. http://dx.doi.org/10.2174/18743153010030100001.
Pełny tekst źródłaSteadman, David, Alvin Lo, Gabriel Waksman i Han Remaut. "Bacterial surface appendages as targets for novel antibacterial therapeutics". Future Microbiology 9, nr 7 (lipiec 2014): 887–900. http://dx.doi.org/10.2217/fmb.14.46.
Pełny tekst źródłaZhao, Yue, Xiaoyu Wang, Ruilian Qi i Huanxiang Yuan. "Recent Advances of Natural-Polymer-Based Hydrogels for Wound Antibacterial Therapeutics". Polymers 15, nr 15 (4.08.2023): 3305. http://dx.doi.org/10.3390/polym15153305.
Pełny tekst źródłaJati, Suborno, Sumana Mahata, Soumita Das, Saurabh Chatterjee i Sushil K. Mahata. "Catestatin: Antimicrobial Functions and Potential Therapeutics". Pharmaceutics 15, nr 5 (20.05.2023): 1550. http://dx.doi.org/10.3390/pharmaceutics15051550.
Pełny tekst źródłaSchweitzer, Bettina, Viktória Lilla Balázs, Szilárd Molnár, Bernadett Szögi-Tatár, Andrea Böszörményi, Tamás Palkovics, Györgyi Horváth i György Schneider. "Antibacterial Effect of Lemongrass (Cymbopogon citratus) against the Aetiological Agents of Pitted Keratolyis". Molecules 27, nr 4 (19.02.2022): 1423. http://dx.doi.org/10.3390/molecules27041423.
Pełny tekst źródłaYeo, Chien Ing, Edward R. T. Tiekink i Jactty Chew. "Insights into the Antimicrobial Potential of Dithiocarbamate Anions and Metal-Based Species". Inorganics 9, nr 6 (14.06.2021): 48. http://dx.doi.org/10.3390/inorganics9060048.
Pełny tekst źródłaNaskar, Atanu, i Kwang-sun Kim. "Photo-Stimuli-Responsive CuS Nanomaterials as Cutting-Edge Platform Materials for Antibacterial Applications". Pharmaceutics 14, nr 11 (30.10.2022): 2343. http://dx.doi.org/10.3390/pharmaceutics14112343.
Pełny tekst źródłaVita, Nicole A., Shelby M. Anderson, Michael D. LaFleur i Richard E. Lee. "Targeting Helicobacter pylori for antibacterial drug discovery with novel therapeutics". Current Opinion in Microbiology 70 (grudzień 2022): 102203. http://dx.doi.org/10.1016/j.mib.2022.102203.
Pełny tekst źródłaNikolich, Mikeljon P., i Andrey A. Filippov. "Bacteriophage Therapy: Developments and Directions". Antibiotics 9, nr 3 (24.03.2020): 135. http://dx.doi.org/10.3390/antibiotics9030135.
Pełny tekst źródłaTaylor, Peter W. "Novel therapeutics for bacterial infections". Emerging Topics in Life Sciences 1, nr 1 (4.04.2017): 85–92. http://dx.doi.org/10.1042/etls20160017.
Pełny tekst źródłaKumar, Harish, Kushal Kumar Bansal i Anju Goyal. "Synthetic Methods and Antimicrobial Perspective of Pyrazole Derivatives: An Insight". Anti-Infective Agents 18, nr 3 (11.09.2020): 207–23. http://dx.doi.org/10.2174/2211352517666191022103831.
Pełny tekst źródłaSmola-Dmochowska, Anna, Kamila Lewicka, Alicja Macyk, Piotr Rychter, Elżbieta Pamuła i Piotr Dobrzyński. "Biodegradable Polymers and Polymer Composites with Antibacterial Properties". International Journal of Molecular Sciences 24, nr 8 (18.04.2023): 7473. http://dx.doi.org/10.3390/ijms24087473.
Pełny tekst źródłaKhan, Salman, Khurshid Ahmad, Ajaz Ahmad, Mohammad Raish, Basit L. Jan, Altaf Khan i Mohd Sajid Khan. "Biogenic pentagonal silver nanoparticles for safer and more effective antibacterial therapeutics". International Journal of Nanomedicine Volume 13 (listopad 2018): 7789–99. http://dx.doi.org/10.2147/ijn.s168224.
Pełny tekst źródłaPanchal, Rekha G., Ricky L. Ulrich, Douglas Lane, Michelle M. Butler, Chad Houseweart, Timothy Opperman, John D. Williams i in. "Novel Broad-Spectrum Bis-(Imidazolinylindole) Derivatives with Potent Antibacterial Activities against Antibiotic-Resistant Strains". Antimicrobial Agents and Chemotherapy 53, nr 10 (27.07.2009): 4283–91. http://dx.doi.org/10.1128/aac.01709-08.
Pełny tekst źródłaHuang, Kai, Zhongjun Li, Jing Lin, Gang Han i Peng Huang. "Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications". Chemical Society Reviews 47, nr 14 (2018): 5109–24. http://dx.doi.org/10.1039/c7cs00838d.
Pełny tekst źródłaShortridge, Dee, Jennifer M. Streit, Michael D. Huband, Paul R. Rhomberg i Robert K. Flamm. "In Vitro Evaluation of Delafloxacin Activity when Tested Against Contemporary community-Acquired Bacterial Respiratory Tract Infection Isolates (2014–2016): Results from the Sentry Antimicrobial Surveillance Program". Open Forum Infectious Diseases 4, suppl_1 (2017): S369. http://dx.doi.org/10.1093/ofid/ofx163.904.
Pełny tekst źródłaBarnard, Anne M. L., i James A. Cass. "Targetable nano-delivery vehicles to deliver anti-bacterial small acid-soluble spore protein (SASP) genes". Emerging Topics in Life Sciences 5, nr 5 (1.11.2021): 637–41. http://dx.doi.org/10.1042/etls20210147.
Pełny tekst źródłaLuo, Jiaoyang, Dan Yan, Meihua Yang, Xiaoping Dong i Xiaohe Xiao. "Multicomponent Therapeutics of Berberine Alkaloids". Evidence-Based Complementary and Alternative Medicine 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/545898.
Pełny tekst źródłaTavares, Marina Rodrigues, Michal Pechar, Petr Chytil i Tomáš Etrych. "Polymer‐Based Drug‐Free Therapeutics for Anticancer, Anti‐Inflammatory, and Antibacterial Treatment". Macromolecular Bioscience 21, nr 8 (sierpień 2021): 2170021. http://dx.doi.org/10.1002/mabi.202170021.
Pełny tekst źródłaTavares, Marina Rodrigues, Michal Pechar, Petr Chytil i Tomáš Etrych. "Polymer‐Based Drug‐Free Therapeutics for Anticancer, Anti‐Inflammatory, and Antibacterial Treatment". Macromolecular Bioscience 21, nr 8 (18.05.2021): 2100135. http://dx.doi.org/10.1002/mabi.202100135.
Pełny tekst źródłaKhatri, Savita, Manish Kumar, Neetu Phougat, Renu Chaudhary i Anil Kumar Chhillar. "Perspectives on Phytochemicals as Antibacterial Agents: An Outstanding Contribution to Modern Therapeutics". Mini-Reviews in Medicinal Chemistry 16, nr 4 (1.02.2016): 290–308. http://dx.doi.org/10.2174/138955751604160201150438.
Pełny tekst źródłaMuijsers, Mariska, An Martel, Pascale Van Rooij, Kris Baert, Griet Vercauteren, Richard Ducatelle, Patrick De Backer, Francis Vercammen, Freddy Haesebrouck i Frank Pasmans. "Antibacterial therapeutics for the treatment of chytrid infection in amphibians: Columbus’s egg?" BMC Veterinary Research 8, nr 1 (2012): 175. http://dx.doi.org/10.1186/1746-6148-8-175.
Pełny tekst źródłaGupta, Akash, Ryan F. Landis i Vincent M. Rotello. "Nanoparticle-Based Antimicrobials: Surface Functionality is Critical". F1000Research 5 (16.03.2016): 364. http://dx.doi.org/10.12688/f1000research.7595.1.
Pełny tekst źródłaSEPTAMA, Abdi Wira, Nordin SIMBAK i Eldiza Puji RAHMI. "Prospect of Plant-based Flavonoids to Overcome Antibacterial Resistance: A Mini-Review". Walailak Journal of Science and Technology (WJST) 17, nr 5 (3.05.2019): 503–13. http://dx.doi.org/10.48048/wjst.2020.5583.
Pełny tekst źródłaMohammed, Afrah E., Sahar S. Alghamdi, Nada K. Alharbi, Fatma Alshehri, Rasha Saad Suliman, Fahad Al-Dhabaan i Maha Alharbi. "Limoniastrum monopetalum–Mediated Nanoparticles and Biomedicines: In Silico Study and Molecular Prediction of Biomolecules". Molecules 27, nr 22 (18.11.2022): 8014. http://dx.doi.org/10.3390/molecules27228014.
Pełny tekst źródłaBlount, Kenneth F., Cynthia Megyola, Mark Plummer, David Osterman, Tim O'Connell, Paul Aristoff, Cheryl Quinn i in. "Novel Riboswitch-Binding Flavin Analog That Protects Mice against Clostridium difficile Infection without Inhibiting Cecal Flora". Antimicrobial Agents and Chemotherapy 59, nr 9 (13.07.2015): 5736–46. http://dx.doi.org/10.1128/aac.01282-15.
Pełny tekst źródłaIslam, Md Badrul, Md Inshaful Islam, Nikhil Nath, Talha Bin Emran, Md Rezaur Rahman, Rohit Sharma i Mohammed Mahbubul Matin. "Recent Advances in Pyridine Scaffold: Focus on Chemistry, Synthesis, and Antibacterial Activities". BioMed Research International 2023 (18.05.2023): 1–15. http://dx.doi.org/10.1155/2023/9967591.
Pełny tekst źródłaMaulana, Afif Rifqie, Bawon Triatmoko i Mochammad Amrun Hidayat. "Uji Aktivitas Antibakteri Ekstrak Etanol Daun Waru Gunung (Hibiscus macrophyllus) dan Fraksinya terhadap Staphylococcus aureus". Pustaka Kesehatan 9, nr 1 (16.01.2021): 48. http://dx.doi.org/10.19184/pk.v9i1.16432.
Pełny tekst źródłaMeena, Khem Raj, i Shamsher S. Kanwar. "Lipopeptides as the Antifungal and Antibacterial Agents: Applications in Food Safety and Therapeutics". BioMed Research International 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/473050.
Pełny tekst źródłaDai, Chongshan, Jiahao Lin, Hui Li, Zhangqi Shen, Yang Wang, Tony Velkov i Jianzhong Shen. "The Natural Product Curcumin as an Antibacterial Agent: Current Achievements and Problems". Antioxidants 11, nr 3 (25.02.2022): 459. http://dx.doi.org/10.3390/antiox11030459.
Pełny tekst źródłaZhang, Kun, Heng Zhang, Chunyu Gao, Ruibo Chen i Chunli Li. "Antimicrobial Mechanism of pBD2 against Staphylococcus aureus". Molecules 25, nr 15 (31.07.2020): 3513. http://dx.doi.org/10.3390/molecules25153513.
Pełny tekst źródłaHitt, Samantha J., Barney M. Bishop i Monique L. van Hoek. "Komodo-dragon cathelicidin-inspired peptides are antibacterial against carbapenem-resistant Klebsiella pneumoniae". Journal of Medical Microbiology 69, nr 11 (1.11.2020): 1262–72. http://dx.doi.org/10.1099/jmm.0.001260.
Pełny tekst źródłaBashir, Asma, Kashif Ali, Khair Bux, Neha Farid, Mitra Khaireabadi, Khwaja Ali Hassan, Abrar Hussain i in. "Molecular Characterization, Purification, and Mode of Action of Enterocin KAE01 from Lactic Acid Bacteria and Its In Silico Analysis against MDR/ESBL Pseudomonas aeruginosa". Genes 13, nr 12 (10.12.2022): 2333. http://dx.doi.org/10.3390/genes13122333.
Pełny tekst źródłaALKHULAIFI, M., M. ALWEHAIBI, J. ALSHEHRI, M. AWAD, N. ALDOSARI, A. HENDI i K. ORTASHI. "RED SAND SYNTHESIZED SILVER NANOPARTICLES: CHARACTERIZATION AND THEIR BIOMEDICAL POTENTIAL". Journal of Optoelectronic and Biomedical Materials 12, nr 4 (październik 2020): 95–99. http://dx.doi.org/10.15251/jobm.2020.124.95.
Pełny tekst źródłaHatfull, Graham F. "Exploring the possibilities of bacteriophages for tuberculosis". Open Access Government 39, nr 1 (7.07.2023): 142–43. http://dx.doi.org/10.56367/oag-039-10795.
Pełny tekst źródłaMeganathan, Rangaswamy, i Timothy J Hagen. "Kenyan Traditional Medicine: Exploring Solutions to the Modern Antibacterial Crises through Natural Products Chemistry". Journal of Alternative, Complementary & Integrative Medicine 9, nr 4 (23.06.2023): 1–8. http://dx.doi.org/10.24966/acim-7562/100347.
Pełny tekst źródłaBlair, Jessica M. A., Vassiliy N. Bavro, Vito Ricci, Niraj Modi, Pierpaolo Cacciotto, Ulrich Kleinekathӧfer, Paolo Ruggerone i in. "AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity". Proceedings of the National Academy of Sciences 112, nr 11 (3.03.2015): 3511–16. http://dx.doi.org/10.1073/pnas.1419939112.
Pełny tekst źródłaPeleg, Anton Y., Sebastian Jara, Divya Monga, George M. Eliopoulos, Robert C. Moellering i Eleftherios Mylonakis. "Galleria mellonella as a Model System To Study Acinetobacter baumannii Pathogenesis and Therapeutics". Antimicrobial Agents and Chemotherapy 53, nr 6 (30.03.2009): 2605–9. http://dx.doi.org/10.1128/aac.01533-08.
Pełny tekst źródłaBrady, Daniel, Alessandro Grapputo, Ottavia Romoli i Federica Sandrelli. "Insect Cecropins, Antimicrobial Peptides with Potential Therapeutic Applications". International Journal of Molecular Sciences 20, nr 23 (22.11.2019): 5862. http://dx.doi.org/10.3390/ijms20235862.
Pełny tekst źródłaSousa, Sílvia A., Joana R. Feliciano, Tiago Pita, Catarina F. Soeiro, Beatriz L. Mendes, Luis G. Alves i Jorge H. Leitão. "Bacterial Nosocomial Infections: Multidrug Resistance as a Trigger for the Development of Novel Antimicrobials". Antibiotics 10, nr 8 (4.08.2021): 942. http://dx.doi.org/10.3390/antibiotics10080942.
Pełny tekst źródłaTong, Xianqin, Xiaoliang Qi, Ruiting Mao, Wenhao Pan, Mengying Zhang, Xuan Wu, Gang Chen, Jianliang Shen, Hui Deng i Rongdang Hu. "Construction of functional curdlan hydrogels with bio-inspired polydopamine for synergistic periodontal antibacterial therapeutics". Carbohydrate Polymers 245 (październik 2020): 116585. http://dx.doi.org/10.1016/j.carbpol.2020.116585.
Pełny tekst źródłaDelgado, Yamixa, Céline Cassé, Yancy Ferrer-Acosta, Ivette J. Suárez-Arroyo, José Rodríguez-Zayas, Anamaris Torres, Zally Torres-Martínez i in. "Biomedical Effects of the Phytonutrients Turmeric, Garlic, Cinnamon, Graviola, and Oregano: A Comprehensive Review". Applied Sciences 11, nr 18 (13.09.2021): 8477. http://dx.doi.org/10.3390/app11188477.
Pełny tekst źródłaChatterjee, Papiya, Nisha Gupta i Jai Shankar Paul. "Synthesized Iron Nanoparticle via Green Approach and Evaluating its Antibacterial Potential". NewBioWorld 3, nr 2 (31.12.2021): 26–36. http://dx.doi.org/10.52228/nbw-jaab.2021-3-2-7.
Pełny tekst źródłaNAIK, SANJAY, i SANJIT KUMAR. "APPLICATIONS OF PLANT LECTINS IN BIOTECHNOLOGY AND THERAPEUTICS". Journal of microbiology, biotechnology and food sciences 11, nr 4 (1.02.2022): e4224. http://dx.doi.org/10.55251/jmbfs.4224.
Pełny tekst źródła