Artykuły w czasopismach na temat „Antibacterial agents”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Antibacterial agents.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Antibacterial agents”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Bremner, John B. "Some approaches to new antibacterial agents". Pure and Applied Chemistry 79, nr 12 (1.01.2007): 2143–53. http://dx.doi.org/10.1351/pac200779122143.

Pełny tekst źródła
Streszczenie:
Bacteria use a number of resistance mechanisms to counter the antibacterial challenge, and one of these is the expression of transmembrane protein-based efflux pumps which can pump out antibacterials from within the cells, thus lowering the antibacterial concentration to nonlethal levels. For example, in S. aureus, the NorA pump can pump out the antibacterial alkaloid berberine and ciprofloxacin. One general strategy to reduce the health threat of resistant bacteria is to block a major bacterial resistance mechanism at the same time as interfering with another bacterial pathway or target site. New developments of this approach in the context of dual-action prodrugs and dual-action (or hybrid) drugs in which one action is targeted at blocking the NorA efflux pump and the second action at an alternative bacterial target site (or sites) for the antibacterial action are discussed. The compounds are based on a combination of 2-aryl-5-nitro-1H-indole derivatives (as the NorA efflux pump blocking component) and derivatives of berberine. General design principles, syntheses, antibacterial testing, and preliminary work on modes of action studies are discussed.
Style APA, Harvard, Vancouver, ISO itp.
2

Verma, Tarawanti, i Nitin Bansal. "Triazinone Derivatives as Antibacterial and Antimalarial Agents". Asian Pacific Journal of Health Sciences 6, nr 2 (czerwiec 2019): 1–20. http://dx.doi.org/10.21276/apjhs.2019.6.2.1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kaye, Elaine T., i Kenneth M. Kaye. "TOPICAL ANTIBACTERIAL AGENTS". Infectious Disease Clinics of North America 9, nr 3 (wrzesień 1995): 547–59. http://dx.doi.org/10.1016/s0891-5520(20)30685-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Thorsteinsson, T., T. Loftsson i M. Masson. "Soft Antibacterial Agents". Current Medicinal Chemistry 10, nr 13 (1.07.2003): 1129–36. http://dx.doi.org/10.2174/0929867033457520.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Brickner, Steven J. "Oxazolidinone Antibacterial Agents". Current Pharmaceutical Design 2, nr 2 (kwiecień 1996): 175–94. http://dx.doi.org/10.2174/1381612802666220921173820.

Pełny tekst źródła
Streszczenie:
The oxazolidinones are a new class of synthetic antibacterial agents. These compounds demonstrate potent in vitro and in vivo activity against important human pathogens, including multiple antibiotic-resistant strains of gram positive organisms including the staphylococci, streptococci, and enterococci. The oxazolidinones have a novel mechanism of action, inhibiting bacterial protein synthesis at a very early step prior to initiation. Literature disclosures have described the inability to detect in vitro bacterial resistance development to the oxazolidinones. Only the (S)-enantiomer is active; a new synthetic route yielding oxazolidinones with high optical purity has been reported. This paper will review the spectrum of activity, mechanism of action studies, toxicity issues, and structure activity relationships of the oxazolidinones.
Style APA, Harvard, Vancouver, ISO itp.
6

Telford, Mark. "Releasing antibacterial agents". Materials Today 7, nr 12 (grudzień 2004): 10. http://dx.doi.org/10.1016/s1369-7021(04)00613-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Hussar, Daniel A. "New Antibacterial Agents". American Pharmacy 33, nr 1 (styczeń 1993): 41–46. http://dx.doi.org/10.1016/s0160-3450(15)30889-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kaye, Elaine T. "TOPICAL ANTIBACTERIAL AGENTS". Infectious Disease Clinics of North America 14, nr 2 (czerwiec 2000): 321–39. http://dx.doi.org/10.1016/s0891-5520(05)70250-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Lio, Peter A., i Elaine T. Kaye. "Topical Antibacterial Agents". Medical Clinics of North America 95, nr 4 (lipiec 2011): 703–21. http://dx.doi.org/10.1016/j.mcna.2011.03.008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Lio, Peter A., i Elaine T. Kaye. "Topical antibacterial agents". Infectious Disease Clinics of North America 18, nr 3 (wrzesień 2004): 717–33. http://dx.doi.org/10.1016/j.idc.2004.04.008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Lio, Peter A., i Elaine T. Kaye. "Topical Antibacterial Agents". Infectious Disease Clinics of North America 23, nr 4 (grudzień 2009): 945–63. http://dx.doi.org/10.1016/j.idc.2009.06.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Korzeniowski, Oksana M. "ANTIBACTERIAL AGENTS IN PREGNANCY". Infectious Disease Clinics of North America 9, nr 3 (wrzesień 1995): 639–51. http://dx.doi.org/10.1016/s0891-5520(20)30690-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

LiPuma, John J., i Terrence L. Stull. "ANTIBACTERIAL AGENTS IN PEDIATRICS". Infectious Disease Clinics of North America 9, nr 3 (wrzesień 1995): 561–74. http://dx.doi.org/10.1016/s0891-5520(20)30686-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Labro, Marie Thérèse. "Immunomodulation by Antibacterial Agents". Drugs 45, nr 3 (marzec 1993): 319–28. http://dx.doi.org/10.2165/00003495-199345030-00001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

&NA;, &NA;. "Antibacterial agents: viral/ parasitic". Current Opinion in Infectious Diseases 9, nr 6 (grudzień 1996): B235—B251. http://dx.doi.org/10.1097/00001432-199612000-00020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Crunkhorn, Sarah. "Predicting novel antibacterial agents". Nature Reviews Drug Discovery 19, nr 4 (9.03.2020): 238. http://dx.doi.org/10.1038/d41573-020-00033-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Melander, Roberta J., Daniel V. Zurawski i Christian Melander. "Narrow-spectrum antibacterial agents". MedChemComm 9, nr 1 (2018): 12–21. http://dx.doi.org/10.1039/c7md00528h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

TOTSUKA, KYOICHI. "Pharmacokinetics of antibacterial agents." Rinsho yakuri/Japanese Journal of Clinical Pharmacology and Therapeutics 25, nr 1 (1994): 385–87. http://dx.doi.org/10.3999/jscpt.25.385.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Shavely, S. R., i G. R. Hodges. "NEUROTOXICITY OF ANTIBACTERIAL AGENTS". Pediatric Infectious Disease Journal 4, nr 2 (marzec 1985): 219. http://dx.doi.org/10.1097/00006454-198503000-00047.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

San Joaquin, Venusto H., i Terrence L. Stull. "ANTIBACTERIAL AGENTS IN PEDIATRICS". Infectious Disease Clinics of North America 14, nr 2 (czerwiec 2000): 341–55. http://dx.doi.org/10.1016/s0891-5520(05)70251-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Ford, Charles W., Judith C. Hamel, Douglas Stapert, Judy K. Moerman, Douglas K. Hutchinson, Michael R. Barbachyn i Gary E. Zurenko. "Oxazolidinones: New antibacterial agents". Trends in Microbiology 5, nr 5 (maj 1997): 196–200. http://dx.doi.org/10.1016/s0966-842x(97)01032-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Jungheim, L. N., R. J. Ternansky i R. E. Holmes. "Bicyclic pyrazolidinone antibacterial agents". Drugs of the Future 15, nr 2 (1990): 149. http://dx.doi.org/10.1358/dof.1990.015.02.114554.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Bowlware, Karen L., i Terrence Stull. "Antibacterial agents in pediatrics". Infectious Disease Clinics of North America 18, nr 3 (wrzesień 2004): 513–31. http://dx.doi.org/10.1016/j.idc.2004.04.009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Chavez-Bueno, Susana, i Terrence L. Stull. "Antibacterial Agents in Pediatrics". Infectious Disease Clinics of North America 23, nr 4 (grudzień 2009): 865–80. http://dx.doi.org/10.1016/j.idc.2009.06.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Quesnelle, Claude A., Patrice Gill, Stephan Roy, Marco Dodier, Anne Marinier, Alain Martel, Lawrence B. Snyder i in. "Biaryl isoxazolinone antibacterial agents". Bioorganic & Medicinal Chemistry Letters 15, nr 11 (czerwiec 2005): 2728–33. http://dx.doi.org/10.1016/j.bmcl.2005.04.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Meneghetti, Fiorella, i Daniela Barlocco. "Novel Antibacterial Agents 2022". Pharmaceuticals 17, nr 3 (13.03.2024): 370. http://dx.doi.org/10.3390/ph17030370.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Gupta, Richa K., Ganesh M. S. Thakuri, Gan B. Bajracharya i Ram Narayan Jha. "Synthesis of antioxidative anthraquinones as potential anticancer agents". BIBECHANA 18, nr 2 (9.06.2021): 143–53. http://dx.doi.org/10.3126/bibechana.v18i2.31234.

Pełny tekst źródła
Streszczenie:
Antioxidant and antibacterial activities of natural anthraquinones namely chrysophanol (1) and emodin (2), and synthesized anthraquinones viz. 2-methylanthraquinone (3), anthraquinone (4), 2-bromoanthraquinone (5), rubiadin (6), chrysophanol diacetate (7), rubiadin diacetate (8) and 1,8-dimethoxy-3-methylanthraquinone (9) were investigated. Anthraquinones 9, 3, 6, 5 and 2 exhibited a high DPPH• radical scavenging capacity (IC50 = <500 μg/mL) showing their therapeutic potentiality for the treatment of cancers. These anthraquinones 1-9 have also displayed a weak to moderate antibacterial activity against Bacillus subtilis. Chrysophanol diacetate (7) including emodin (2) have been appeared as the valuable antibacterials. BIBECHANA 18 (2) (2021) 143-153
Style APA, Harvard, Vancouver, ISO itp.
28

Tavakolian, Mandana, Mira Okshevsky, Theo G. M. van de Ven i Nathalie Tufenkji. "Developing Antibacterial Nanocrystalline Cellulose Using Natural Antibacterial Agents". ACS Applied Materials & Interfaces 10, nr 40 (12.09.2018): 33827–38. http://dx.doi.org/10.1021/acsami.8b08770.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Kumaraswamy, D., i D. Prashanth. "SYNTHESIS AND EVALUATION OF PYRAZOLINE DERIVATIVES AS ANTIBACTERIAL AGENTS". International Journal of Pharmacy and Biological Sciences 7, nr 1 (1.01.2017): 84–93. http://dx.doi.org/10.21276/ijpbs.2017.7.1.10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Belete, Tafere Mulaw. "Novel targets to develop new antibacterial agents and novel alternatives to antibacterial agents". Human Microbiome Journal 11 (marzec 2019): 100052. http://dx.doi.org/10.1016/j.humic.2019.01.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Hupp, James R. "Antibacterial, Antiviral, and Antifungal Agents". Oral and Maxillofacial Surgery Clinics of North America 3, nr 2 (maj 1991): 273–85. http://dx.doi.org/10.1016/s1042-3699(20)30498-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Livornese, Lawrence L., Mark J. Ingerman, Robert L. Benz i Jerome Santoro. "ANTIBACTERIAL AGENTS IN RENAL FAILURE". Infectious Disease Clinics of North America 9, nr 3 (wrzesień 1995): 591–614. http://dx.doi.org/10.1016/s0891-5520(20)30688-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Rubino, Christopher M., i John S. Bradley. "Optimizing Therapy with Antibacterial Agents". Pediatric Drugs 9, nr 6 (2007): 361–69. http://dx.doi.org/10.2165/00148581-200709060-00003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Keniche, Assia, Samia Bellifa, Hafida Hassaine i Joseph Kajima Mulengi. "Development of new antibacterial agents". Medical Technologies Journal 1, nr 2 (8.06.2017): 31–32. http://dx.doi.org/10.26415/2572-004x-vol1iss2p31-32.

Pełny tekst źródła
Streszczenie:
Background: Antibiotics, as miraculous drugs, have been used extensively to confront fatal infection, even without prescriptions. However, the inappropriate and disproportionate use of antibiotics have led to the emergence of new drug-resistant bacteria1, which causes a high risk of serious diseases and dramatically aggravates the clinical complications in hospitals. Methods: By using the peptide coupling protocol, a simple straightforward synthesis of functionalized aziridines has been developed. By means of this synthetic strategy from readily available N-phtaloyl acide and 2-methylbenzosulfonate aziridine using DCC as coupling agent, new tosylates aziridines could be obtained. The coupling reactions occurred without a ring opening of the three membered ring. Results: This work describes new results of our ongoing research targeting new derivatives of biological interests. All the compounds were screened for their antibacterial activity; they all showed comparable moderate to good growth inhibitory activity with reference to tetracyclin and gentamicin. Conclusion: In conclusion, we reported the synthesis and a preliminary antibacterial evaluation of novel functionalized tosylaziridines. The synthetic strategy relies on the coupling reactions between tosylaziridines and amino acids. Moreover, and besides showing interesting antibacterial activities, the series of novel compounds can be further improved to serve as potential drug against nosocomial diseases.
Style APA, Harvard, Vancouver, ISO itp.
35

Mittapally, Sirisha, Ruheena Taranum i Sumaiya Parveen. "Metal ions as antibacterial agents". Journal of Drug Delivery and Therapeutics 8, nr 6-s (15.12.2018): 411–19. http://dx.doi.org/10.22270/jddt.v8i6-s.2063.

Pełny tekst źródła
Streszczenie:
Metals like mercury, arsenic, copper and silver have been used in various forms as antimicrobials for thousands of years. The use of metals in treatment was mentioned in Ebers Papyrus (1500BC); i.e, copper to decrease inflammation & iron to overcome anemia. Copper has been registered at the U.S. Environmental Protection Agency as the earliest solid antimicrobial material. Copper is used for the treatment of different E. coli, MRSA, Pseudomonas infections. Advantage of use of silver is it has low toxicity to human’s cells than bacteria.It is less susceptible to gram +ve bacteria than gram –bacteria due to its thicker cell wall. Zinc is found to be active against Streptococcus pneumonia, Campylobacter jejuni. Silver & zinc act against vibrio cholera & enterotoxic E. coli. The use of metals as antibacterial got reduce with discovery of antibiotics in twentieth century, immediately after that antibiotic resistance was seen due to transfer of antibiotic resistance genes by plasmids also known as Resistance Transfer Factors or R-factors. Metal complexes are used to show synergistic activity against bacteria’s like copper & chlorhexidine on dental plaque bacteria, silver nanoparticles & cephalexin against E. coli & S. aureus. Keywords: Metals, Oligodynamic effect, Copper, Silver
Style APA, Harvard, Vancouver, ISO itp.
36

Kong, Qidi, i Yushe Yang. "Recent advances in antibacterial agents". Bioorganic & Medicinal Chemistry Letters 35 (marzec 2021): 127799. http://dx.doi.org/10.1016/j.bmcl.2021.127799.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Meneghetti, Fiorella, i Daniela Barlocco. "Special Issue “Novel Antibacterial Agents”". Pharmaceuticals 14, nr 4 (19.04.2021): 382. http://dx.doi.org/10.3390/ph14040382.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Wainwright, Nicholas J., Paul Collins i James Ferguson. "Photosensitivity Associated with Antibacterial Agents". Drug Safety 9, nr 6 (grudzień 1993): 437–40. http://dx.doi.org/10.2165/00002018-199309060-00006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Pasquale, T. R., i J. S. Tan. "Nonantimicrobial Effects of Antibacterial Agents". Clinical Infectious Diseases 40, nr 1 (1.01.2005): 127–35. http://dx.doi.org/10.1086/426545.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Singal, Anjum, i Gurvinder P. Thami. "Topical Antibacterial Agents in Dermatology". Journal of Dermatology 30, nr 9 (wrzesień 2003): 644–48. http://dx.doi.org/10.1111/j.1346-8138.2003.tb00452.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

&NA;. "Nonantimicrobial Effects of Antibacterial Agents". Pediatric Infectious Disease Journal 24, nr 4 (kwiecień 2005): 395. http://dx.doi.org/10.1097/01.inf.0000159186.41813.c1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Joseph A., Witkowski, i Charles Parish Lawrence. "Cutaneous Reactions to Antibacterial Agents". SKINmed: Dermatology for the Clinician 1, nr 5 (wrzesień 2002): 33–44. http://dx.doi.org/10.1111/j.1540-9740.2002.01856.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Couloigner, Evanne, Dominique Cartier i Roger Labie. "Synthesis of pyrazolidinone antibacterial agents". Bioorganic & Medicinal Chemistry Letters 9, nr 15 (sierpień 1999): 2205–6. http://dx.doi.org/10.1016/s0960-894x(99)00352-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Thorarensen, Atli, Gary E. Zurenko, Michael T. Sweeney, Keith R. Marotti i Timothy P. Boyle. "Enols as Potent Antibacterial Agents". Bioorganic & Medicinal Chemistry Letters 11, nr 22 (listopad 2001): 2931–34. http://dx.doi.org/10.1016/s0960-894x(01)00587-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Chen, Luke F., Teena Chopra i Keith S. Kaye. "Pathogens Resistant to Antibacterial Agents". Medical Clinics of North America 95, nr 4 (lipiec 2011): 647–76. http://dx.doi.org/10.1016/j.mcna.2011.03.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Kaye, Keith S., i Donald Kaye. "Antibacterial Therapy and Newer Agents". Medical Clinics of North America 95, nr 4 (lipiec 2011): xi—xii. http://dx.doi.org/10.1016/j.mcna.2011.05.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Labro, Marie Thérèse. "Immunomodulatory Actions of Antibacterial Agents". Clinical Immunotherapeutics 6, nr 6 (grudzień 1996): 454–64. http://dx.doi.org/10.1007/bf03259367.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Kern, Thomas J. "Antibacterial agents for ocular therapeutics". Veterinary Clinics of North America: Small Animal Practice 34, nr 3 (maj 2004): 655–68. http://dx.doi.org/10.1016/j.cvsm.2003.12.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Chiu, Loretta M., i Guy W. Amsden. "Intrapulmonary Pharmacokinetics of Antibacterial Agents". American Journal of Respiratory Medicine 1, nr 3 (czerwiec 2002): 201–9. http://dx.doi.org/10.1007/bf03256610.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Ballal, VasudevN, i Jothi Varghese. "Antibacterial action of herbal agents". Saudi Endodontic Journal 5, nr 1 (2015): 65. http://dx.doi.org/10.4103/1658-5984.149095.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii