Artykuły w czasopismach na temat „Anti-infective agents”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Anti-infective agents.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Anti-infective agents”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Tomioka, Haruaki. "Anti-infective Agents". Current Pharmaceutical Design 27, nr 38 (25.10.2021): 3947–48. http://dx.doi.org/10.2174/138161282738211011151923.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Zopf, D., i S. Roth. "Oligosaccharide anti-infective agents". Lancet 347, nr 9007 (kwiecień 1996): 1017–21. http://dx.doi.org/10.1016/s0140-6736(96)90150-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kidwai, M., S. Saxena, S. Rastogi i R. Venkataramanan. "Pyrimidines as Anti-Infective Agents". Current Medicinal Chemistry -Anti-Infective Agents 2, nr 4 (1.12.2003): 269–86. http://dx.doi.org/10.2174/1568012033483015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Sbaraglini, María, i Alan Talevi. "Hybrid Compounds as Anti-infective Agents". Current Topics in Medicinal Chemistry 17, nr 9 (13.02.2017): 1080–95. http://dx.doi.org/10.2174/1568026616666160927160912.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Sardari, S., i M. Dezfulian. "Cheminformatics in Anti-Infective Agents Discovery". Mini-Reviews in Medicinal Chemistry 7, nr 2 (1.02.2007): 181–89. http://dx.doi.org/10.2174/138955707779802633.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Kirst, Herbert A. "Circumventing resistance to anti-infective agents". Expert Opinion on Pharmacotherapy 16, nr 2 (5.01.2015): 149–50. http://dx.doi.org/10.1517/14656566.2015.1002669.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Tschida, Suzanne J., Kyle Vance-Bryan i Darwin E. Zaske. "Anti-infective agents and hepatic disease". Medical Clinics of North America 79, nr 4 (1995): 895–917. http://dx.doi.org/10.1016/s0025-7125(16)30045-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Lakshmaiah Narayana, Jayaram, i Jyh-Yih Chen. "Antimicrobial peptides: Possible anti-infective agents". Peptides 72 (październik 2015): 88–94. http://dx.doi.org/10.1016/j.peptides.2015.05.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Ludwig, Beatrice S., João D. G. Correia i Fritz E. Kühn. "Ferrocene derivatives as anti-infective agents". Coordination Chemistry Reviews 396 (październik 2019): 22–48. http://dx.doi.org/10.1016/j.ccr.2019.06.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Spina, Edoardo, Maria Antonietta Barbieri, Giuseppe Cicala i Jose de Leon. "Clinically Relevant Interactions between Atypical Antipsychotics and Anti-Infective Agents". Pharmaceuticals 13, nr 12 (2.12.2020): 439. http://dx.doi.org/10.3390/ph13120439.

Pełny tekst źródła
Streszczenie:
This is a comprehensive review of the literature on drug interactions (DIs) between atypical antipsychotics and anti-infective agents that focuses on those DIs with the potential to be clinically relevant and classifies them as pharmacokinetic (PK) or pharmacodynamic (PD) DIs. PubMed searches were conducted for each of the atypical antipsychotics and most commonly used anti-infective agents (13 atypical antipsychotics by 61 anti-infective agents/classes leading to 793 individual searches). Additional relevant articles were obtained from citations and from prior review articles written by the authors. Based on prior DI articles and our current understanding of PK and PD mechanism, we developed tables with practical recommendations for clinicians for: antibiotic DIs, antitubercular DIs, antifungal DIs, antiviral DIs, and other anti-infective DIs. Another table reflects that in clinical practice, DIs between atypical antipsychotics and anti-infective agents occur in patients also suffering an infection that may also influence the PK and PD mechanisms of both drugs (the atypical antipsychotic and the anti-infective agent(s)). These tables reflect the currently available literature and our current knowledge of the field and will need to be updated as new DI information becomes available.
Style APA, Harvard, Vancouver, ISO itp.
11

Lee, Ngan, i John Ho. "Celastrol and Terpenes as Anti-Infective Agents". Anti-Infective Agents in Medicinal Chemistry 7, nr 2 (1.04.2008): 97–100. http://dx.doi.org/10.2174/187152108783954632.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Ho, John. "Bioactive Herbal Alkaloids as Anti-Infective Agents". Anti-Infective Agents 11, nr 1 (1.11.2012): 70–74. http://dx.doi.org/10.2174/22113626130108.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Schuck, Edgar L., i Hartmut Derendorf. "Pharmacokinetic/ pharmacodynamic evaluation of anti-infective agents". Expert Review of Anti-infective Therapy 3, nr 3 (czerwiec 2005): 361–73. http://dx.doi.org/10.1586/14787210.3.3.361.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Sharma, Prabodh, Kushal Bansal, Aakash Deep i Meenakshi Pathak. "Benzothiazole Derivatives as Potential Anti-Infective Agents". Current Topics in Medicinal Chemistry 17, nr 2 (20.11.2016): 208–37. http://dx.doi.org/10.2174/1568026616666160530152546.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Barrett, Michael P., Curtis G. Gemmell i Colin J. Suckling. "Minor groove binders as anti-infective agents". Pharmacology & Therapeutics 139, nr 1 (lipiec 2013): 12–23. http://dx.doi.org/10.1016/j.pharmthera.2013.03.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Michalopoulos, A., i E. Papadakis. "Inhaled Anti-infective Agents: Emphasis on Colistin". Infection 38, nr 2 (27.02.2010): 81–88. http://dx.doi.org/10.1007/s15010-009-9148-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Adermann, Knut. "Defensins as anti-infective and immunomodulatory agents". Expert Opinion on Therapeutic Patents 16, nr 9 (31.08.2006): 1223–34. http://dx.doi.org/10.1517/13543776.16.9.1223.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Casadevall, Arturo. "Antibody-based therapies as anti-infective agents". Expert Opinion on Investigational Drugs 7, nr 3 (marzec 1998): 307–21. http://dx.doi.org/10.1517/13543784.7.3.307.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Venugopalan, Veena, i Craig A. Martin. "Selecting Anti-infective Agents for the Treatment of Bone Infections: New Anti-infective Agents and Chronic Suppressive Therapy". Orthopedics 30, nr 10 (1.10.2007): 832–34. http://dx.doi.org/10.3928/01477447-20071001-16.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Jagtap Sachin Pishwikar, Sagar. "Design Synthesis and Screening of Mannich Bases of Alliin as Anti - Infective Agents". International Journal of Science and Research (IJSR) 12, nr 6 (5.06.2023): 989–92. http://dx.doi.org/10.21275/sr23606132539.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Carmona-Ribeiro, Ana, Debora Vieira i Nilton Lincopan. "Cationic Surfactants and Lipids as Anti-Infective Agents". Anti-Infective Agents in Medicinal Chemistry 5, nr 1 (1.01.2006): 33–51. http://dx.doi.org/10.2174/187152106774755572.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

de Oliveira, Jarbas, Fernanda Nunes, Melissa Simoes Pires, Denizar Alberto Silva Melo i Marcio Fagundes Donadio. "Antibodies as Anti-Infective Agents in Medicinal Chemistry". Anti-Infective Agents in Medicinal Chemistry 7, nr 4 (1.10.2008): 249–57. http://dx.doi.org/10.2174/187152108785908811.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Butler,, Dawn R., Robert J. Kuhn i Mary H. H. Chandler. "Pharmacokinetics of Anti-Infective Agents in Paediatric Patients". Clinical Pharmacokinetics 26, nr 5 (maj 1994): 374–95. http://dx.doi.org/10.2165/00003088-199426050-00005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Nugraha, Ari S., i Paul A. Keller. "Revealing Indigenous Indonesian Traditional Medicine: Anti-infective Agents". Natural Product Communications 6, nr 12 (grudzień 2011): 1934578X1100601. http://dx.doi.org/10.1177/1934578x1100601240.

Pełny tekst źródła
Streszczenie:
Indonesia is rich in medicinal plants which the population has used traditionally from generation to generation for curing diseases. Our interest in the treatment of infectious diseases has lead to the investigation of traditional Indonesian treatments. In this review, we present a comprehensive review of ethnopharmacologically directed screening in Indonesian medicinal plants to search for new antiviral, antimalarial, antibacterial and antifungal agents. Some potent drug leads have been isolated from Indonesian medicinal plants. Further research is still required for the lead development as well as the search for new bioactive compounds from the enormous medicinal plant resources.
Style APA, Harvard, Vancouver, ISO itp.
25

D’Avolio, Antonio, Debora Pensi, Lorena Baietto i Giovanni Di Perri. "Therapeutic drug monitoring of intracellular anti-infective agents". Journal of Pharmaceutical and Biomedical Analysis 101 (grudzień 2014): 183–93. http://dx.doi.org/10.1016/j.jpba.2014.03.040.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Guirao, Xavier. "Empiric anti-infective agents of intra-abdominal infection". Cirugía Española (English Edition) 87, nr 2 (styczeń 2010): 61–62. http://dx.doi.org/10.1016/s2173-5077(10)70164-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Edwards, Paul. "Pyrimidin-4-yl phenols as anti-infective agents". Drug Discovery Today 11, nr 15-16 (sierpień 2006): 768–69. http://dx.doi.org/10.1016/j.drudis.2006.06.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Atillasoy, Cem, i Panagiotis Gourlias. "1235. On the Edge of Tomorrow: Expedited Regulatory Pathways for Anti-Infective Therapies". Open Forum Infectious Diseases 7, Supplement_1 (1.10.2020): S637. http://dx.doi.org/10.1093/ofid/ofaa439.1420.

Pełny tekst źródła
Streszczenie:
Abstract Background The FDA has developed expedited review programs and pathways to increase drug development for products that have a major clinical benefit. These programs include: Fast Track, Orphan Drug Status, Accelerated Approval, Priority Review, Breakthrough Therapy (BTD) and Qualified Infectious Disease Products (QIPD). Given the heightened awareness of infectious diseases--and emerging global threats, such as resistant bacteria and Ebola—academia and industry have developed and received approval for 88 new infectious disease agents. The objective of this study was to assess the use of expedited review pathways for the 88 anti-infective agents that were approved between 2001-2020. FDA Expedited Drug Development Programs Methods We analyzed the FDA Drug Approval Database entitled, “Compilation of CDER New Molecular Entity (NME) Drug and New Biologic Approvals” for anti-infective therapies that were approved after 2000. Anti-infective therapies were defined as agents that were used to treat or prevent infectious diseases and include antibiotics, antivirals and antifungals. Our analysis focused on a comparison of the percentage of approved anti-infective agents that used each of the aforementioned designations across 2 decades (2001-2010 & 2011-2020). A drug may have one, none, or multiple of these designations. Results There were significant differences in the percentage of anti-infective agents approved with priority review, fast track and accelerated approval in 2001-2010 compared to 2011-2020 (See Results Figure 1) BTD and QIDP did not exist until 2012, thus preventing comparisons between decades. QIDP • Between 2012-2020, 16 anti-infectives have been approved with QIDP. From 2017-2020, 40% (n=10) of approved anti-infectives had QIDP. Orphan Drug Status: • Between 2017-2020, 32% of anti-infectives approved have the orphan drug designation. Comparison of FDA Expedited Drug Development Programs use between 2001-2010 and 2011-2020 Conclusion Our findings indicate Priority Review and Fast Track use has increased since 2010 among anti-infective products. Additionally, our analyses indicate that since 2017 there has been increased use of Orphan Drug Status and QIDP. However, there has been limited use of Breakthrough Therapy and Accelerated Approvals. These two pathways should be increasingly considered by academia, industry and the FDA to further expedite innovative anti-infective development. Disclosures All Authors: No reported disclosures
Style APA, Harvard, Vancouver, ISO itp.
29

Kowalski, Regis P., Shannon V. Nayyar, Eric G. Romanowski i Vishal Jhanji. "Anti-Infective Treatment and Resistance Is Rarely Problematic with Eye Infections". Antibiotics 11, nr 2 (6.02.2022): 204. http://dx.doi.org/10.3390/antibiotics11020204.

Pełny tekst źródła
Streszczenie:
The treatment of eye infections is very different than treating other body infections that require systemic anti-infectives. Endophthalmitis, keratitis, conjunctivitis, and other ocular infections are treated with direct injection and with topical drops directly to the infection site. There are no anti-infective susceptibility standards to interpret treatment success, but the systemic standards can be used to guide ocular therapy if the concentration of anti-infective in the ocular tissue is assumed to be higher than the concentration in the blood serum. This Perspective describes: (1) eye infections, (2) diagnostics of eye infections, (3) anti-infective treatment of eye infections, (4) anti-infective resistance of ocular pathogens, and (5) alternative anti-infective delivery and therapy. The data, based on years of clinical and laboratory research, support the premise that ocular infections are less problematic if etiologic agents are laboratory-diagnosed and if prompt, potent, anti-infective therapy is applied. Anti-infective susceptibility should be monitored to assure continued therapeutic success and the possibility of new-found resistance. New delivery systems and therapies may be helpful to better treat future ocular infections.
Style APA, Harvard, Vancouver, ISO itp.
30

Gray-Davis, Yolanda N., i Anne Mounsey. "Are oral anti-infective agents effective for pityriasis rosea?" Evidence-Based Practice 17, nr 5 (maj 2014): E12. http://dx.doi.org/10.1097/01.ebp.0000540661.00859.7d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Hanes, Philip J., i James P. Purvis. "Local Anti-Infective Therapy: Pharmacological Agents. A Systematic Review". Annals of Periodontology 8, nr 1 (grudzień 2003): 79–98. http://dx.doi.org/10.1902/annals.2003.8.1.79.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Koirala, Niranjan. "Medicinal/Pharmaceutical Chemistry and Engineering of Anti-infective Agents". Anti-Infective Agents 19, nr 5 (7.12.2021): 2. http://dx.doi.org/10.2174/221135251905211206161418.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Lagardère, Prisca, Cyril Fersing, Nicolas Masurier i Vincent Lisowski. "Thienopyrimidine: A Promising Scaffold to Access Anti-Infective Agents". Pharmaceuticals 15, nr 1 (27.12.2021): 35. http://dx.doi.org/10.3390/ph15010035.

Pełny tekst źródła
Streszczenie:
Thienopyrimidines are widely represented in the literature, mainly due to their structural relationship with purine base such as adenine and guanine. This current review presents three isomers—thieno[2,3-d]pyrimidines, thieno[3,2-d]pyrimidines and thieno[3,4-d]pyrimidines—and their anti-infective properties. Broad-spectrum thienopyrimidines with biological properties such as antibacterial, antifungal, antiparasitic and antiviral inspired us to analyze and compile their structure–activity relationship (SAR) and classify their synthetic pathways. This review explains the main access route to synthesize thienopyrimidines from thiophene derivatives or from pyrimidine analogs. In addition, SAR study and promising anti-infective activity of these scaffolds are summarized in figures and explanatory diagrams. Ligand–receptor interactions were modeled when the biological target was identified and the crystal structure was solved.
Style APA, Harvard, Vancouver, ISO itp.
34

Rodvold, Keith A., Liz Yoo i Jomy M. George. "Penetration of Anti-Infective Agents into PulmonaryEpithelial Lining Fluid". Clinical Pharmacokinetics 50, nr 11 (listopad 2011): 689–704. http://dx.doi.org/10.2165/11592900-000000000-00000.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Pennington, J. E. "Newer uses of intravenous immunoglobulins as anti-infective agents." Antimicrobial Agents and Chemotherapy 34, nr 8 (1.08.1990): 1463–66. http://dx.doi.org/10.1128/aac.34.8.1463.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Vazquez, Jose A., i Jack D. Sobel. "Reviews Of Anti‐infective Agents: Anidulafungin: A Novel Echinocandin". Clinical Infectious Diseases 43, nr 2 (15.07.2006): 215–22. http://dx.doi.org/10.1086/505204.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Ritz, Nicole, Julia Bielicki, Marc Pfister i John van den Anker. "Therapeutic Drug Monitoring for Anti-infective Agents in Pediatrics". Pediatric Infectious Disease Journal 35, nr 5 (maj 2016): 570–72. http://dx.doi.org/10.1097/inf.0000000000001091.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Sivakumar, P. M., S. Prabhu Seenivasan, Vanaja Kumar i Mukesh Doble. "Novel 1,3,5-triphenyl-2-pyrazolines as anti-infective agents". Bioorganic & Medicinal Chemistry Letters 20, nr 10 (maj 2010): 3169–72. http://dx.doi.org/10.1016/j.bmcl.2010.03.083.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Rubin, Harvey, Trevor Selwood, Takahiro Yano, Damian G. Weaver, H. Marie Loughran, Michael J. Costanzo, Richard W. Scott, Jay E. Wrobel, Katie B. Freeman i Allen B. Reitz. "Acinetobacter baumannii OxPhos inhibitors as selective anti-infective agents". Bioorganic & Medicinal Chemistry Letters 25, nr 2 (styczeń 2015): 378–83. http://dx.doi.org/10.1016/j.bmcl.2014.11.020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Li, Kuang-pang. "Analysis for drugs and metabolites including anti-infective agents". Microchemical Journal 43, nr 1 (luty 1991): 86. http://dx.doi.org/10.1016/0026-265x(91)90043-o.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

YAGISAWA, MORIMASA, i KEISUKE SUNAKAWA. "Trends in development of anti-infective agents in Japan". Pediatrics International 39, nr 1 (luty 1997): 105–13. http://dx.doi.org/10.1111/j.1442-200x.1997.tb03567.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Miller, JamesN. "Analysis for drugs and metabolites including anti-infective agents". Journal of Pharmaceutical and Biomedical Analysis 9, nr 5 (styczeń 1991): 433. http://dx.doi.org/10.1016/0731-7085(91)80169-a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Šíma, Martin, i Ondřej Slanař. "Dose Optimization and Targeting Strategies of Anti-Infective Agents". Pharmaceutics 15, nr 7 (3.07.2023): 1870. http://dx.doi.org/10.3390/pharmaceutics15071870.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Setti, E. L., i R. G. Micetich. "New Trends in Antimicrobial Development". Current Medicinal Chemistry 5, nr 2 (kwiecień 1998): 101–13. http://dx.doi.org/10.2174/0929867305666220314201629.

Pełny tekst źródła
Streszczenie:
The continual evolution of microbial resistance to the available classes of antibiotics poses a serious threat to the efficacy of traditional antibacterial therapy. Today, there are two main approaches that are being applied to discover better and more effective anti-infective agents against common as well as resistant pathogens: (a) the improvement of the "classical" antimicrobial agents by targeting the so called "resistance factors", and (b) the search of new anti-infective agents with novel modes of actions. This review will highlight the most relevant aspects of both of these approaches and some of the latest findings in the field of antimicrobial discovery.
Style APA, Harvard, Vancouver, ISO itp.
45

Wu, Ping-Sheng, Shu-Jung Lai, Kit-Man Fung i Tien-Sheng Tseng. "Characterization of the structure–function relationship of a novel salt-resistant antimicrobial peptide, RR12". RSC Advances 10, nr 40 (2020): 23624–31. http://dx.doi.org/10.1039/d0ra04299d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Walder, Bernhard, Didier Pittet i Martin R. Tramèr. "Prevention of Bloodstream Infections With Central Venous Catheters Treated With Anti-Infective Agents Depends on Catheter Type and Insertion Time: Evidence From a Meta-Analysis". Infection Control & Hospital Epidemiology 23, nr 12 (grudzień 2002): 748–56. http://dx.doi.org/10.1086/502005.

Pełny tekst źródła
Streszczenie:
Objective:To test the evidence that the risk of infection related to central venous catheters (CVCs) is decreased by anti-infective coating or cuffing.Design:Systematic review of randomized, controlled trials comparing anti-infective with inactive (control) CVCs.Interventions:Average insertion times were taken as a measurement of the length of insertion. Dichotomous data were combined using a fixed effect model and expressed as odds ratio (OR) with 95% confidence interval (CI95).Results:Two trials on antibiotic coating (343 CVCs) had an average insertion time of 6 days; the risk of BSI decreased from 5.1% with control to 0% with anti-infective catheters. There were no trials with longer average insertion times. In three trials on silver collagen cuffs (422 CVCs), the average insertion time ranged from 5 to 8.2 days (median, 7 days); the risk of BSI was 5.6% with control and 3.2% with anti-infective catheters. In another trial on silver collagen cuffs (101 CVCs), the average insertion time was 38 days; the risk of BSI was 3.7% with control and 4.3% with anti-infective catheters. In five trials on chlorhexidine-silver sulfadiazine coating (1,269 CVCs), the average insertion time ranged from 5.2 to 7.5 days (median, 6 days); the risk of BSI decreased from 4.1% with control to 1.9% with anti-infective catheters. In five additional trials on chlorhexidine–silver sulfadiazine coating (1,544 CVCs), the average insertion time ranged from 7.8 to 20 days (median, 12 days); the risk of BSI was 4.5% with control and 4.2% with anti-infective catheters.Conclusions:Antibiotic and chlorhexidine–silver sulfadiazine coatings are anti-infective for short (approximately 1 week) insertion times. For longer insertion times, there are no data on antibiotic coating, and there is evidence of lack of effect for chlorhexidine-silver sulfadiazine coating. For silver-impregnated collagen cuffs, there is evidence of lack of effect for both short- and long-term insertion.
Style APA, Harvard, Vancouver, ISO itp.
47

Hofmann, Jakob, Sabrina Klingele, Uwe Haberkorn, Gerhard Schmidmaier i Tobias Grossner. "Impact of High-Dose Anti-Infective Agents on the Osteogenic Response of Mesenchymal Stem Cells". Antibiotics 10, nr 10 (16.10.2021): 1257. http://dx.doi.org/10.3390/antibiotics10101257.

Pełny tekst źródła
Streszczenie:
Treatment of infected nonunions and severe bone infections is a huge challenge in modern orthopedics. Their treatment routinely includes the use of anti-infective agents. Although frequently used, little is known about their impact on the osteogenesis of mesenchymal stem cells. In a high- and low-dose set-up, this study evaluates the effects of the antibiotics Gentamicin and Vancomycin as well as the antifungal agent Voriconazole on the ability of mesenchymal stem cells to differentiate into osteoblast-like cells and synthesize hydroxyapatite in a monolayer cell culture. The osteogenic activity was assessed by measuring calcium and phosphate concentrations as well as alkaline phosphatase activity and osteocalcin concentration in the cell culture medium supernatant. The amount of hydroxyapatite was measured directly by radioactive 99mTechnetium-HDP labeling. Regarding the osteogenic markers, it could be concluded that the osteogenesis was successful within the groups treated with osteogenic cell culture media. The results revealed that all anti-infective agents have a cytotoxic effect on mesenchymal stem cells, especially in higher concentrations, whereas the measured absolute amount of hydroxyapatite was independent of the anti-infective agent used. Normed to the number of cells it can therefore be concluded that the above-mentioned anti-infective agents actually have a positive effect on osteogenesis while high-dose Gentamycin, in particular, is apparently capable of boosting the deposition of minerals.
Style APA, Harvard, Vancouver, ISO itp.
48

Ang, M. Trisha C., Roger Gumbau-Brisa, David S. Allan, Robert McDonald, Michael J. Ferguson, Bruce E. Holbein i Matthias Bierenstiel. "DIBI, a 3-hydroxypyridin-4-one chelator iron-binding polymer with enhanced antimicrobial activity". MedChemComm 9, nr 7 (2018): 1206–12. http://dx.doi.org/10.1039/c8md00192h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Welling, Mick, Guillermina Ferro-Flores, Ioannis Pirmettis i Carlo Brouwer. "Current Status of Imaging Infections with Radiolabeled Anti-Infective Agents". Anti-Infective Agents in Medicinal Chemistry 8, nr 3 (1.07.2009): 272–87. http://dx.doi.org/10.2174/187152109788680180.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Boukraa, Laid. "Editorial (Thematic Issue: API-Pruducts: The Alternative Anti-Infective Agents)". Anti-Infective Agents 13, nr 1 (20.05.2015): 2. http://dx.doi.org/10.2174/221135251301150520115554.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii