Gotowa bibliografia na temat „Anti-infective agents”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Anti-infective agents”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Anti-infective agents"

1

Tomioka, Haruaki. "Anti-infective Agents". Current Pharmaceutical Design 27, nr 38 (25.10.2021): 3947–48. http://dx.doi.org/10.2174/138161282738211011151923.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Zopf, D., i S. Roth. "Oligosaccharide anti-infective agents". Lancet 347, nr 9007 (kwiecień 1996): 1017–21. http://dx.doi.org/10.1016/s0140-6736(96)90150-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kidwai, M., S. Saxena, S. Rastogi i R. Venkataramanan. "Pyrimidines as Anti-Infective Agents". Current Medicinal Chemistry -Anti-Infective Agents 2, nr 4 (1.12.2003): 269–86. http://dx.doi.org/10.2174/1568012033483015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Sbaraglini, María, i Alan Talevi. "Hybrid Compounds as Anti-infective Agents". Current Topics in Medicinal Chemistry 17, nr 9 (13.02.2017): 1080–95. http://dx.doi.org/10.2174/1568026616666160927160912.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Sardari, S., i M. Dezfulian. "Cheminformatics in Anti-Infective Agents Discovery". Mini-Reviews in Medicinal Chemistry 7, nr 2 (1.02.2007): 181–89. http://dx.doi.org/10.2174/138955707779802633.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Kirst, Herbert A. "Circumventing resistance to anti-infective agents". Expert Opinion on Pharmacotherapy 16, nr 2 (5.01.2015): 149–50. http://dx.doi.org/10.1517/14656566.2015.1002669.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Tschida, Suzanne J., Kyle Vance-Bryan i Darwin E. Zaske. "Anti-infective agents and hepatic disease". Medical Clinics of North America 79, nr 4 (1995): 895–917. http://dx.doi.org/10.1016/s0025-7125(16)30045-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Lakshmaiah Narayana, Jayaram, i Jyh-Yih Chen. "Antimicrobial peptides: Possible anti-infective agents". Peptides 72 (październik 2015): 88–94. http://dx.doi.org/10.1016/j.peptides.2015.05.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Ludwig, Beatrice S., João D. G. Correia i Fritz E. Kühn. "Ferrocene derivatives as anti-infective agents". Coordination Chemistry Reviews 396 (październik 2019): 22–48. http://dx.doi.org/10.1016/j.ccr.2019.06.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Spina, Edoardo, Maria Antonietta Barbieri, Giuseppe Cicala i Jose de Leon. "Clinically Relevant Interactions between Atypical Antipsychotics and Anti-Infective Agents". Pharmaceuticals 13, nr 12 (2.12.2020): 439. http://dx.doi.org/10.3390/ph13120439.

Pełny tekst źródła
Streszczenie:
This is a comprehensive review of the literature on drug interactions (DIs) between atypical antipsychotics and anti-infective agents that focuses on those DIs with the potential to be clinically relevant and classifies them as pharmacokinetic (PK) or pharmacodynamic (PD) DIs. PubMed searches were conducted for each of the atypical antipsychotics and most commonly used anti-infective agents (13 atypical antipsychotics by 61 anti-infective agents/classes leading to 793 individual searches). Additional relevant articles were obtained from citations and from prior review articles written by the authors. Based on prior DI articles and our current understanding of PK and PD mechanism, we developed tables with practical recommendations for clinicians for: antibiotic DIs, antitubercular DIs, antifungal DIs, antiviral DIs, and other anti-infective DIs. Another table reflects that in clinical practice, DIs between atypical antipsychotics and anti-infective agents occur in patients also suffering an infection that may also influence the PK and PD mechanisms of both drugs (the atypical antipsychotic and the anti-infective agent(s)). These tables reflect the currently available literature and our current knowledge of the field and will need to be updated as new DI information becomes available.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Anti-infective agents"

1

Osborne, Sadie D. "Synthesis of carbohydrate based anti-infective agents". Thesis, University of Reading, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.394179.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Allcock, Robert William. "The synthesis and evaluation of some anti-infective agents". Thesis, Nottingham Trent University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341277.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kanwar, Ankush. "Studies Aimed at the Synthesis of Anti-Infective Agents". Scholar Commons, 2018. http://scholarcommons.usf.edu/etd/7176.

Pełny tekst źródła
Streszczenie:
Infectious diseases continue to be a major concern worldwide. They are the second leading cause of death after heart disease. Factors such as an increasing global population, travel, urbanization, global climate change and evolution of pathogens have made infectious diseases more common. Infectious diseases, particularly neglected tropical diseases (NTDs) result in many deaths worldwide. Malaria and leishmaniasis are two common (NTDs) which affect low income countries around the globe. Low cost drugs with novel mechanism of action are required to tackle the growing resistances of parasites against current drugs used in the developing world, where most of the cases occur. The first part of this manuscript (chapters 1 - 3) describes the synthesis of novel analogs active against Leishmania donovani parasite which causes leishmaniasis. Leishmaniasis is a vector-borne complex group of diseases transmitted through the bite of an infected female sand-fly. Its clinical manifestations range from the less severe (cutaneous) to fatal (visceral) forms depending upon infecting species, immunity of host and the environment. Reports have suggested the role of Heat shock protein 90 (Hsp 90) in the differentiation of the Leishmania parasite from the promastigote stage to the pathogenic amastigote stage inside the host. A series of tetrahydro-indazole, tetrahydro-pyrazolo pyridine and radicicol hybrid compounds were prepared based on known Hsp 90 inhibitors, SNX2112 and NVP-AUY922. The synthetic approach allowed us to generate a diverse library of analogs which were used to probe the hydrophobic pocket of Hsp 90 active site. The most active compound, was found to be twice more active as the clinically used drug, Miltefosine, in an infected macrophage assay with an IC50 = 0.88 µM. The second part of this manuscript (chapters 4 - 5) describes the synthesis of xanthurenic acid analogs as antimalarial drugs. Xanthurenic acid (XA) is a vital component for the gametogenesis of the Plasmodium inside the mosquito’s gut. Gametogenesis plays an important part in the continuation of the parasite’s life cycle. A series of xanthurenic acid analogs were synthesized with the aim of inducing premature exflagellation of the microgametes, thus blocking the key step required for the transmission of parasites from humans to the mosquito. A biotinylated xanthurenic acid analog and a clickable xanthurenic acid analog were also synthesized which will help us investigate the mechanism of action of xanthurenic acid in inducing gametogenesis in mosquito. In the preliminary screening efforts in an exflagellation assay, analog 4.40 showed promising activity and was more active in inducing exflagellation than xanthurenic acid. An exflagellation assay of other analogs is currently being pursued. Further investigations into the molecular target and mechanism of action are underway with the biotinylated xanthurenic acid analog.
Style APA, Harvard, Vancouver, ISO itp.
4

Alamu, Josiah Olusegun Herwaldt Loreen A. "Evaluation of antimicrobial use in a pediatric intensive care unit". Iowa City : University of Iowa, 2009. http://ir.uiowa.edu/etd/277.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Pütsep, Katrin. "On the control of the microflora in the gastro intestinal tract : functional examples of antibacterial peptides from Helicobacter pylori and mouse small intestine /". Stockholm, 2000. http://diss.kib.ki.se/2000/91-628-4267-6/.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Giraldi, Cátia. "Enterococcus isolados de alimentos: caracterização molecular e perfil de resistência a antimicrobianos". Universidade Tecnológica Federal do Paraná, 2014. http://repositorio.utfpr.edu.br/jspui/handle/1/1136.

Pełny tekst źródła
Streszczenie:
Os enterococos são patógenos com considerável capacidade de expressar resistência a vários antimicrobianos e com abundante representatividade em alimentos. Este estudo teve por finalidade realizar o isolamento de cepas do gênero Enterococcus em alimentos, representados por carne de frango e carne suína (crua e processada), analisar o perfil de resistência antimicrobiana através do método de disco-difusão e identificar através de técnicas moleculares as espécies dos isolados e os genes codificadores de resistência para vancomicina e tetraciclina. Foram analisadas 36 amostras, totalizando 54 cepas isoladas pertencentes ao gênero Enterococcus. A espécie detectada em maior ocorrência nos isolados de carne crua de frango (40%) e carne crua suína (29%) foi E. faecalis e nos isolados de produtos cárneos processados (100%) E. faecium. E. casseliflavus/E. flavencens teve seu isolamento apenas em produto processado. A espécie E. gallinarum não foi confirmada entre as amostras de alimentos analisadas. As espécies E. faecalis e E. faecium isoladas a partir de carne crua de frango foram significativamente mais resistentes que as isoladas das demais amostras, apresentando altos percentuais de resistência para: estreptomicina, ciprofloxacina, norfloxacina, eritromicina, vancomicina e tetraciclina. Isolados de carne crua de frango e suína apresentaram gene de resistência para tetraciclina e vancomicina. Portanto, sugere-se que, alimentos de origem animal possam desempenhar um papel importante na disseminação e transferência de enterococos resistentes e/ou genes de resistência aos seres humanos.
Enterococci are pathogens with considerable ability to express resistance to multiple antimicrobials and abundant representation in foods. This study aimed to carry out the isolation of strains of the genus Enterococcus in food, represented by chicken and pork (raw and processed), to analyze the profile of antimicrobial resistance by the disk diffusion method and by molecular techniques to identify species isolates and genes encoding resistance to vancomycin and tetracycline. 36 samples, totaling 54 strains belonging to the genus Enterococcus were analyzed. The species detected in most occurred in isolates from raw chicken meat (40 %) and raw pork (29%) was isolated in E. faecalis and processed meat products (100%) E. faecium. E. casseliflavus / E. flavencens had its isolation only in the processed product. The species E. gallinarum was confirmed between food samples surveyed. E. faecalis and E. faecium isolates from raw chicken meat isolated were significantly more resistant than the other samples, showing high percentage of resistance to: streptomycin, ciprofloxacin, norfloxacin, erythromycin, vancomycin and tetracycline. The isolated raw poultry and swine gene showed resistance to tetracycline and vancomycin. Therefore, it is suggested that food of animal origin may play an important role in the dissemination and transfer resistant enterococci and / or resistance genes to humans.
Style APA, Harvard, Vancouver, ISO itp.
7

Kasanah, Noer. "Marine anti-infective agents : bioactivity, microbial production, biotransformation and biosynthetic study /". Full text available from ProQuest UM Digital Dissertations, 2008. http://0-proquest.umi.com.umiss.lib.olemiss.edu/pqdweb?index=0&did=1850412761&SrchMode=1&sid=3&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1279226241&clientId=22256.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Sherrill, Jennifer Lynne. "Surface modification of nylon 6,6 to form Light-Activated Antimicrobial Materials (LAAMS)". Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/18964.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Everett, Lucy Margaret. "The effects of antibiotic stress on the expression of virulence factors by strains of Staphylococcus aureus diplaying vancomycin-intermediate resistance". Thesis, University of Glasgow, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.272854.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Toft, Simonsen Henrik. "Ethnopharmacological and phytochemical investigation of Melicope species from Réunion Island /". Cph. : Department of Medicinal Chemistry, Royal Danish School of Pharmacy, 2002. http://www.dfh.dk/phd/defences/Henrik%20Toft%20Simonsen.html.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Anti-infective agents"

1

Finberg, Robert W., i Roy Guharoy. Clinical Use of Anti-infective Agents. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67459-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Finberg, Robert W., i Roy Guharoy. Clinical Use of Anti-infective Agents. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1068-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Milne, George W. A., 1937-, red. Ashgate handbook of anti-infective agents. Aldershot, Hants: Ashgate, 2000.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Rahman, Atta-ur, i M. Iqbal Choudhary. Frontiers in anti-infective drug discovery. Saif Zone, Sharjah, United Arab Emirates]: Bentham Science Publishers Ltd., 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

K, Peterson Phillip, i Verhoef Jan, red. The antimicrobial agents. Amsterdam: Elsevier, 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Gray, Lynn. U.S. markets for medical anti-infective agents. Norwalk, CT: Business Communications Co., 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Foundation, Mayo, red. Symposium of microbial agents. Rochester, N.Y: Mayo Foundation, 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

J, Jeljaszewicz, i Pulverer G, red. Antimicrobial agents and immunity. London: Academic, 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Panel, Ontario Anti-Infective Review, red. Anti-infective guidelines for community-acquired infections. Wyd. 2. Toronto: MUMS Guideline Clearinghouse, 2001.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

B, Hugo W., i Russell A. D. 1936-, red. Pharmaceutical microbiology. Wyd. 6. Malden, Mass: Blackwell Science, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Anti-infective agents"

1

Moore, Joanne I. "Anti-Infective Agents". W Oklahoma Notes, 153–74. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-2514-0_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Al-Zidan, Radhwan Nidal. "Anti-Infective Agents". W Drugs in Pregnancy, 17–79. Includes bibliographical references and index.: Apple Academic Press, 2020. http://dx.doi.org/10.1201/9781003019107-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Petitjean, O., P. Nicolas, M. Tod, C. Padoin i A. Jacolot. "Drug Interactions during Anti-Infective Treatments". W Antimicrobial Agents, 1320–52. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555815929.ch54.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Meng, Xianmin, Qian Zhang i Ping Dong. "Pharmacogenomics of Anti-Infective Agents". W Pharmacogenomics in Precision Medicine, 123–36. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3895-7_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Finberg, Robert W., i Roy Guharoy. "Introduction and History". W Clinical Use of Anti-infective Agents, 3–4. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1068-3_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Finberg, Robert W., i Roy Guharoy. "Macrolides". W Clinical Use of Anti-infective Agents, 63–66. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1068-3_10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Finberg, Robert W., i Roy Guharoy. "Metronidazole and Clindamycin". W Clinical Use of Anti-infective Agents, 67–70. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1068-3_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Finberg, Robert W., i Roy Guharoy. "Quinolones". W Clinical Use of Anti-infective Agents, 71–74. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1068-3_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Finberg, Robert W., i Roy Guharoy. "Tetracyclines". W Clinical Use of Anti-infective Agents, 75–78. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1068-3_13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Finberg, Robert W., i Roy Guharoy. "Clinical Approach to the Treatment of Infectious Diseases". W Clinical Use of Anti-infective Agents, 81–84. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1068-3_14.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Anti-infective agents"

1

Eng, Su Anne, i Sheila Nathan. "Screening for potential anti-infective agents towards Burkholderia pseudomallei infection". W THE 2014 UKM FST POSTGRADUATE COLLOQUIUM: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4895249.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Baniasadi, Shadi, Maryam Alehashem, Amirali Mahboobipour i Behrooz Farzanegan. "Clinically important drug interactions with anti-infective agents in critically ill patients with respiratory disorders". W ERS International Congress 2016 abstracts. European Respiratory Society, 2016. http://dx.doi.org/10.1183/13993003.congress-2016.pa3727.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Miranda, Diego Garcia, ALEX GUILHERME LEITE COSTA MANSO i Lucas de Paula Ramos. "CINNAMOMUM VERUM EXTRACT AND APIS MELLIFERA PROPOLIS TINCTURE AS ANTI-INFECTIVE AGENTS AGAINST MULTIRESISTANT ACINETOBACTER BAUMANNII". W 2° Science & Business Connection. São José dos Campos, São Paulo: Even3, 2024. http://dx.doi.org/10.29327/2-science-business-connection-407088.805568.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Zwirchmayr, J., C. Durante Cruz, U. Grienke, P. Tammela i J. M. Rollinger. "Short Lecture “Deciphering the Anti-Infective Properties of Peucedanum ostruthium: Biochemometry Identifies Ostruthin as Pluripotent Anti-Infective Agent”". W GA – 70th Annual Meeting 2022. Georg Thieme Verlag KG, 2022. http://dx.doi.org/10.1055/s-0042-1758924.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii