Gotowa bibliografia na temat „Antenna applications- Microwave”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Antenna applications- Microwave”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Antenna applications- Microwave"
Kurdyanto, Rachmat Agus, Nurhayati Nurhayati, Puput Wanarti Rusimamto i Farid Baskoro. "STUDY COMPARATIVE OF ANTENNA FOR MICROWAVE IMAGING APPLICATIONS". INAJEEE Indonesian Journal of Electrical and Eletronics Engineering 3, nr 2 (28.08.2020): 41. http://dx.doi.org/10.26740/inajeee.v3n2.p41-47.
Pełny tekst źródłaKumar, Ravi, Anchal Garg, Heli Shah i Bhupinder Kaur. "Survey on performance parameters of planar microwave antennas". International Journal of Experimental Research and Review 31, Spl Volume (30.07.2023): 186–94. http://dx.doi.org/10.52756/10.52756/ijerr.2023.v31spl.017.
Pełny tekst źródłaOpaluch, Oliver Roman, Nimba Oshnik, Richard Nelz i Elke Neu. "Optimized Planar Microwave Antenna for Nitrogen Vacancy Center Based Sensing Applications". Nanomaterials 11, nr 8 (19.08.2021): 2108. http://dx.doi.org/10.3390/nano11082108.
Pełny tekst źródłaDurachman, Yusuf. "Fabrication of Horn Antenna for Microwave Application". International Innovative Research Journal of Engineering and Technology 6, nr 2 (30.12.2020): EC—17—EC—27. http://dx.doi.org/10.32595/iirjet.org/v6i2.2020.138.
Pełny tekst źródłaRafique, Umair, Stefano Pisa, Renato Cicchetti, Orlandino Testa i Marta Cavagnaro. "Ultra-Wideband Antennas for Biomedical Imaging Applications: A Survey". Sensors 22, nr 9 (22.04.2022): 3230. http://dx.doi.org/10.3390/s22093230.
Pełny tekst źródłaRamya, M., V. Parthipan i M. Yogadeepan. "Certain Investigations on Edge Fed Microstrip Patch Array Antenna for WiMAX Applications". Asian Journal of Electrical Sciences 4, nr 1 (5.05.2015): 1–7. http://dx.doi.org/10.51983/ajes-2015.4.1.1937.
Pełny tekst źródłaHaider, Amir, MuhibUr Rahman, Mahdi Naghshvarianjahromi i Hyung Seok Kim. "Time-Domain Investigation of Switchable Filter Wide-Band Antenna for Microwave Breast Imaging". Sensors 20, nr 15 (1.08.2020): 4302. http://dx.doi.org/10.3390/s20154302.
Pełny tekst źródłaÖziş, E., A. V. Osipov i T. F. Eibert. "Metamaterials for Microwave Radomes and the Concept of a Metaradome: Review of the Literature". International Journal of Antennas and Propagation 2017 (2017): 1–13. http://dx.doi.org/10.1155/2017/1356108.
Pełny tekst źródłaQu, Ming Zhe. "Research on the Applications and Measurements of the Microwave Technology". Applied Mechanics and Materials 556-562 (maj 2014): 3176–79. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.3176.
Pełny tekst źródłaGu, Chunwang, Hao Liu i Min Yi. "Lightweight Fan-Beam Microstrip Grid Antenna for Airborne Microwave Interferometric Radiometer Applications". Micromachines 14, nr 1 (15.01.2023): 228. http://dx.doi.org/10.3390/mi14010228.
Pełny tekst źródłaRozprawy doktorskie na temat "Antenna applications- Microwave"
Zhang, Tieren, University of Western Sydney, of Science Technology and Environment College i School of Engineering and Industrial Design. "Applications of microwave holography to the assessment of antennas and antenna arrays". THESIS_CSTE_EID_Zhang_T.xml, 2001. http://handle.uws.edu.au:8081/1959.7/770.
Pełny tekst źródłaDoctor of Philosophy (PhD)
Zhang, Tieren. "Applications of microwave holography to the assessment of antennas and antenna arrays". Thesis, View thesis, 2001. http://handle.uws.edu.au:8081/1959.7/770.
Pełny tekst źródłaZhang, Tieren. "Applications of microwave holography to the assessment of antennas and antenna arrays". View thesis, 2001. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20040330.103805/index.html.
Pełny tekst źródła"Submitted in fulfilment of requirements for the degree of Doctor of Philosophy, School of Engineering and Industrial Design, University of Western Sydney" Includes bibliography.
Gagnon, Nicolas. "Phase Shifting Surface (PSS) and Phase and Amplitude Shifting Surface (PASS) for Microwave Applications". Thesis, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/19826.
Pełny tekst źródłaGuardiola, Garcia Marta. "Multi-antenna multi-frequency microwave imaging systems for biomedical applications". Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/134967.
Pełny tekst źródłaNeumann, Niels. "Microwave Photonic Applications - From Chip Level to System Level". Vogt Verlag, 2018. https://tud.qucosa.de/id/qucosa%3A74806.
Pełny tekst źródłaThe hybridization between microwave and optical technologies – microwave photonics – is an emerging field with high potential. Benefitting from the best of both worlds, microwave photonics has many use cases and is just at the beginning of its success story. The availability of a higher degree of integration and new technologies such as silicon photonics paves the way for new concepts, new components and new applications. In this work, first, the necessary basic building blocks – optical source, electro-optical conversion, transmission medium and opto-electrical conversion – are introduced. With the help of specific application examples ranging from chip level to system level, the electro-optical co-design process for microwave photonic systems is illustrated. Finally, future directions such as the support of electrical carriers in the millimeter wave and THz range and realization options in integrated optics and nanophotonics are discussed.
Kokkinos, Titos. "Analysis and design of metamaterial-inspired microwave structures and antenna applications". Thesis, Loughborough University, 2010. https://dspace.lboro.ac.uk/2134/6094.
Pełny tekst źródłaRodrigues, Dário Barros. "Target-specific multiphysics modeling for thermal medicine applications". Doctoral thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/11296.
Pełny tekst źródłaThis thesis addresses thermal medicine applications on murine bladder hyperthermia and brain temperature monitoring. The two main objectives are interconnected by the key physics in thermal medicine: heat transfer. The first goal is to develop an analytical solution to characterize the heat transfer in a multi-layer perfused tissue. This analytical solution accounts for important thermoregulation mechanisms and is essential to understand the fundamentals underlying the physical and biological processes associated with heat transfer in living tissues. The second objective is the development of target-specific models that are too complex to be solved by analytical methods. Thus, the software for image segmentation and model simulation is based on numerical methods and is used to optimize non-invasive microwave antennas for specific targets. Two examples are explored using antennas in the passive mode (probe) and active mode (applicator). The passive antenna consists of a microwave radiometric sensor developed for rapid non-invasive feedback of critically important brain temperature. Its design parameters are optimized using a power-based algorithm. To demonstrate performance of the device, we build a realistic model of the human head with separate temperaturecontrolled brain and scalp regions. The sensor is able to track brain temperature with 0.4 °C accuracy in a 4.5 hour long experiment where brain temperature is varied in a 37 °C, 27 °C and 37 °C cycle. In the second study, a microwave applicator with an integrated cooling system is used to develop a new electro-thermo-fluid (multiphysics) model for murine bladder hyperthermia studies. The therapy procedure uses a temperature-based optimization algorithm to maintain the bladder at a desired therapeutic level while sparing remaining tissues from dangerous temperatures. This model shows that temperature dependent biological properties and the effects of anesthesia must be accounted to capture the absolute and transient temperature fields within murine tissues. The good agreement between simulation and experimental results demonstrates that this multiphysics model can be used to predict internal temperatures during murine hyperthermia studies.
GUGLIANDOLO, GIOVANNI. "Applications of Microwave Resonators to Thermal Metrology". Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2849028.
Pełny tekst źródłaKilic, Ozgehan. "Defected Ground Structure And Its Applications To Microwave Devices And Antenna Feed Networks". Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612415/index.pdf.
Pełny tekst źródłaKsiążki na temat "Antenna applications- Microwave"
Otoshi, Tommy Yasuo. Noise temperature theory and applications for deep space communications antenna systems. Boston: Artech House, 2008.
Znajdź pełny tekst źródłaFarmer, Jeffery T. Thermal-distortion analysis of an antenna strongback for geostationary high-frequency microwave applications. Hampton, Va: Langley Research Center, 1990.
Znajdź pełny tekst źródłaWindyka, John. System-level integrated circuit (SLIC) technology development for phased array antenna applications. [Washington, DC: National Aeronautics and Space Administration, 1997.
Znajdź pełny tekst źródłaWindyka, John. System-level integrated circuit (SLIC) technology development for phased array antenna applications. [Washington, DC: National Aeronautics and Space Administration, 1997.
Znajdź pełny tekst źródłaWindyka, John. System-level integrated circuit (SLIC) technology development for phased array antenna applications. [Washington, DC: National Aeronautics and Space Administration, 1997.
Znajdź pełny tekst źródłaWindyka, John. System-level integrated circuit (SLIC) technology development for phased array antenna applications. [Washington, DC: National Aeronautics and Space Administration, 1997.
Znajdź pełny tekst źródłaM, Wahls Deborah, Wright Robert L. 1935- i Langley Research Center, red. Thermal-distortion analysis of an antenna strongback for geostationary high-frequency microwave applications. Washington, D.C: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Znajdź pełny tekst źródłaM, Wahls Deborah, Wright Robert L. 1935- i Langley Research Center, red. Thermal-distortion analysis of an antenna strongback for geostationary high-frequency microwave applications. Washington, D.C: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Znajdź pełny tekst źródłaFourikis, Nicholas. Phased array-based systems and applications. New York: Wiley, 1997.
Znajdź pełny tekst źródłaRabinovich, Victor. Antenna Arrays and Automotive Applications. New York, NY: Springer New York, 2013.
Znajdź pełny tekst źródłaCzęści książek na temat "Antenna applications- Microwave"
Singh, Amit K., Mahesh P. Abegaonkar i Shiban Kishen Koul. "Microwave Metamaterial Absorbers". W Metamaterials for Antenna Applications, 153–91. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003045885-7.
Pełny tekst źródłaIslam, Mohammad Tariqul, i Amran Hossain. "Metamaterial Inspired Stacked Antenna Based Microwave Brain Imaging". W Metamaterial for Microwave Applications, 221–62. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358152-8.
Pełny tekst źródłaIslam, Mohammad Tariqul, i Mohammad Shahidul Islam. "Microwave Head Imaging and 3D Metamaterial-inspired Antenna". W Metamaterial for Microwave Applications, 175–220. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358152-7.
Pełny tekst źródłaIslam, Mohammad Tariqul, i Touhidul Alam. "Lower UHF Metamaterial Antenna for Nanosatellite Communication System". W Metamaterial for Microwave Applications, 263–78. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358152-9.
Pełny tekst źródłaKiang, Jean-Fu, i Chun-Wei Wu. "Introduction to Smart Antenna Systems". W Novel Technologies for Microwave and Millimeter — Wave Applications, 393–410. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4757-4156-8_18.
Pełny tekst źródłaWang, Lulu, i Sachin Kumar. "Compact Ultra-Wideband Antenna for Microwave Imaging Applications". W Computational and Experimental Simulations in Engineering, 211–17. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-02097-1_16.
Pełny tekst źródłaSharma, Pankaj, Vineet Sharma, Nikhil Thakur, Pawan Kumar i Ashok Kumar. "Ferrite Materials for Microwave and High Frequency Antenna Applications". W Engineering Materials, 107–15. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7454-9_6.
Pełny tekst źródłaChang, Chia-Chan, Cheng Liang i Neville C. Luhmann. "Phased Antenna Array Based on Nonlinear Delay Line Technology". W Novel Technologies for Microwave and Millimeter — Wave Applications, 347–68. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4757-4156-8_16.
Pełny tekst źródłaReddy, Ambavaram Pratap, i Pachiyaannan Muthusamy. "Gain and Bandwidth Enhancement of Pentagon Shaped Dual Layer Parasitic Microstrip Patch Antenna for WLAN Applications". W Smart Antennas, Electromagnetic Interference and Microwave Antennas for Wireless Communications, 163–74. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003373230-12.
Pełny tekst źródłaUllrich, Christoph, i Peter Russer. "A Hybrid MoM/UTD Method for the Analysis of a Monopole Antenna in an Aperture". W Electromagnetics and Network Theory and their Microwave Technology Applications, 3–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18375-1_1.
Pełny tekst źródłaStreszczenia konferencji na temat "Antenna applications- Microwave"
Baca, Loretta J., i John G. McInerney. "A High-speed Microwave Antenna Suitable for Optoelectronic Integration". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.fnn5.
Pełny tekst źródłaChung, Kwok L. "Microwave antenna applications of metasurfaces". W 2015 International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM). IEEE, 2015. http://dx.doi.org/10.1109/iwem.2015.7365092.
Pełny tekst źródłaDeepu., V., S. Mridula, R. Sujith i P. Mohanan. "Compact uniplanar antenna for multiband applications". W 2008 International Conference on Recent Advances in Microwave Theory and Applications (MICROWAVE). IEEE, 2008. http://dx.doi.org/10.1109/amta.2008.4763166.
Pełny tekst źródłaWeisgerber, Lars, i Alexander E. Popugaev. "Multibeam antenna array for RFID applications". W 2013 European Microwave Conference (EuMC). IEEE, 2013. http://dx.doi.org/10.23919/eumc.2013.6686596.
Pełny tekst źródłaWang, Lulu, Ahmed Al-Jumaily i Ray Simpkin. "Antenna Array Configuration in Holographic Microwave Imaging". W ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36556.
Pełny tekst źródłaGaber, Shaymaa M., i Noha A. Al-Shalaby. "A Frequency Reconfigurable Antenna for Microwave Applications". W 2018 International Japan-Africa Conference on Electronics, Communications and Computations (JAC-ECC). IEEE, 2018. http://dx.doi.org/10.1109/jec-ecc.2018.8679557.
Pełny tekst źródłaTran, Hung, Tuan Tang, G. R. Branner, B. Preetham Kumar i Sharmistha Modak. "Broadband Conformal Antenna Array for Microwave Applications". W 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. IEEE, 2020. http://dx.doi.org/10.1109/ieeeconf35879.2020.9330263.
Pełny tekst źródłaIsik, Omer, Erdal Korkmaz i Bahattin Turetken. "Antenna arrangement considerations for microwave hyperthermia applications". W 2011 XXXth URSI General Assembly and Scientific Symposium. IEEE, 2011. http://dx.doi.org/10.1109/ursigass.2011.6051378.
Pełny tekst źródłaGeorge, S., S. Raman, P. Mohanan i M. T. Sebastian. "Polymer ceramic composites for microwave substrate and antenna applications". W 2010 Indian Antenna Week "A Workshop on Advanced Antenna Technology". IEEE, 2010. http://dx.doi.org/10.1109/aat.2010.5545948.
Pełny tekst źródłaSanz-Izquierdo, B., F. Huang, J. C. Batchelor i M. Sobhy. "Compact Antenna for WLAN on body applications". W 2006 European Microwave Conference. IEEE, 2006. http://dx.doi.org/10.1109/eumc.2006.281044.
Pełny tekst źródła