Gotowa bibliografia na temat „ANN Classifiers”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „ANN Classifiers”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "ANN Classifiers"
Mohamad, Mumtazimah, Wan Nor Shuhadah Wan Nik, Zahrahtul Amani Zakaria i Arifah Che Alhadi. "An Analysis of Large Data Classification using Ensemble Neural Network". International Journal of Engineering & Technology 7, nr 2.14 (6.04.2018): 53. http://dx.doi.org/10.14419/ijet.v7i2.14.11155.
Pełny tekst źródłaMahanya, G. B., i S. Nithyaselvakumari. "Analysis And Comparison Of Ventricular Cardiac Arrhythmia Classification Using Potassium Channel Parameters With ANN And KNN Classifier". CARDIOMETRY, nr 25 (14.02.2023): 926–33. http://dx.doi.org/10.18137/cardiometry.2022.25.926933.
Pełny tekst źródłaMahanya, G. B., i S. Nithyaselvakumari. "Analysis And Comparison Of Ventricular Cardiac Arrhythmia Classification Using Sodium Channel Parameters With ANN And KNN Classifier". CARDIOMETRY, nr 25 (14.02.2023): 911–18. http://dx.doi.org/10.18137/cardiometry.2022.25.911918.
Pełny tekst źródłaBenmouna, Brahim, Raziyeh Pourdarbani, Sajad Sabzi, Ruben Fernandez-Beltran, Ginés García-Mateos i José Miguel Molina-Martínez. "Comparison of Classic Classifiers, Metaheuristic Algorithms and Convolutional Neural Networks in Hyperspectral Classification of Nitrogen Treatment in Tomato Leaves". Remote Sensing 14, nr 24 (16.12.2022): 6366. http://dx.doi.org/10.3390/rs14246366.
Pełny tekst źródłaChang, Mahmud, Shin, Nguyen-Quang, Price i Prithiviraj. "Comparison of Image Texture Based Supervised Learning Classifiers for Strawberry Powdery Mildew Detection". AgriEngineering 1, nr 3 (4.09.2019): 434–52. http://dx.doi.org/10.3390/agriengineering1030032.
Pełny tekst źródłaPatgiri, Chayashree, i Amrita Ganguly. "Machine Learning Techniques for Automatic Detection of Sickle Cell Anemia using Adaptive Thresholding and Contour-based Segmentation Method". Asian Pacific Journal of Health Sciences 9, nr 4 (20.06.2022): 165–70. http://dx.doi.org/10.21276/apjhs.2022.9.4.33.
Pełny tekst źródłaManjunatha, G., i H. C. Chittappa. "Bearing Fault Classification Using Statistical Features And Machine Learning Approach". Journal of Mines, Metals and Fuels 70, nr 4 (1.03.2022): 104. http://dx.doi.org/10.18311/jmmf/2022/30676.
Pełny tekst źródłaManjunatha, G., i H. C. Chittappa. "Bearing Fault Classification Using Statistical Features And Machine Learning Approach". Journal of Mines, Metals and Fuels 70, nr 3A (12.07.2022): 104. http://dx.doi.org/10.18311/jmmf/2022/30687.
Pełny tekst źródłaMasood, Ibrahim, Nadia Zulikha Zainal Abidin, Nur Rashida Roshidi, Noor Azlina Rejab i Mohd Faizal Johari. "Design of an Artificial Neural Network Pattern Recognition Scheme Using Full Factorial Experiment". Applied Mechanics and Materials 465-466 (grudzień 2013): 1149–54. http://dx.doi.org/10.4028/www.scientific.net/amm.465-466.1149.
Pełny tekst źródłaWang, Daliang, i Xiaowen Guo. "Research on Intelligent Recognition and Classification Algorithm of Music Emotion in Complex System of Music Performance". Complexity 2021 (24.06.2021): 1–10. http://dx.doi.org/10.1155/2021/4251827.
Pełny tekst źródłaRozprawy doktorskie na temat "ANN Classifiers"
Eldud, Omer Ahmed Abdelkarim. "Prediction of protein secondary structure using binary classificationtrees, naive Bayes classifiers and the Logistic Regression Classifier". Thesis, Rhodes University, 2016. http://hdl.handle.net/10962/d1019985.
Pełny tekst źródłaJoo, Hyonam. "Binary tree classifier and context classifier". Thesis, Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/53076.
Pełny tekst źródłaMaster of Science
Billing, Jeffrey J. (Jeffrey Joel) 1979. "Learning classifiers from medical data". Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/8068.
Pełny tekst źródłaIncludes bibliographical references (leaf 32).
The goal of this thesis was to use machine-learning techniques to discover classifiers from a database of medical data. Through the use of two software programs, C5.0 and SVMLight, we analyzed a database of 150 patients who had been operated on by Dr. David Rattner of the Massachusetts General Hospital. C5.0 is an algorithm that learns decision trees from data while SVMLight learns support vector machines from the data. With both techniques we performed cross-validation analysis and both failed to produce acceptable error rates. The end result of the research was that no classifiers could be found which performed well upon cross-validation analysis. Nonetheless, this paper provides a thorough examination of the different issues that arise during the analysis of medical data as well as describes the different techniques that were used as well as the different issues with the data that affected the performance of these techniques.
by Jeffrey J. Billing.
M.Eng.and S.B.
Siegel, Kathryn I. (Kathryn Iris). "Incremental random forest classifiers in spark". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/106105.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (page 53).
The random forest is a machine learning algorithm that has gained popularity due to its resistance to noise, good performance, and training efficiency. Random forests are typically constructed using a static dataset; to accommodate new data, random forests are usually regrown. This thesis presents two main strategies for updating random forests incrementally, rather than entirely rebuilding the forests. I implement these two strategies-incrementally growing existing trees and replacing old trees-in Spark Machine Learning(ML), a commonly used library for running ML algorithms in Spark. My implementation draws from existing methods in online learning literature, but includes several novel refinements. I evaluate the two implementations, as well as a variety of hybrid strategies, by recording their error rates and training times on four different datasets. My benchmarks show that the optimal strategy for incremental growth depends on the batch size and the presence of concept drift in a data workload. I find that workloads with large batches should be classified using a strategy that favors tree regrowth, while workloads with small batches should be classified using a strategy that favors incremental growth of existing trees. Overall, the system demonstrates significant efficiency gains when compared to the standard method of regrowing the random forest.
by Kathryn I. Siegel.
M. Eng.
Palmer-Brown, Dominic. "An adaptive resonance classifier". Thesis, University of Nottingham, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334802.
Pełny tekst źródłaXue, Jinghao. "Aspects of generative and discriminative classifiers". Thesis, Connect to e-thesis, 2008. http://theses.gla.ac.uk/272/.
Pełny tekst źródłaPh.D. thesis submitted to the Department of Statistics, Faculty of Information and Mathematical Sciences, University of Glasgow, 2008. Includes bibliographical references. Print version also available.
Frankowsky, Maximilian, i Dan Ke. "Humanness and classifiers in Mandarin Chinese". Universitätsbibliothek Leipzig, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-224789.
Pełny tekst źródłaLee, Yuchun. "Classifiers : adaptive modules in pattern recognition systems". Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/14496.
Pełny tekst źródłaChungfat, Neil C. (Neil Caye) 1979. "Context-aware activity recognition using TAN classifiers". Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/87220.
Pełny tekst źródłaIncludes bibliographical references (p. 73-77).
by Neil C. Chungfat.
M.Eng.
Li, Ming. "Sequence and text classification : features and classifiers". Thesis, University of East Anglia, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426966.
Pełny tekst źródłaKsiążki na temat "ANN Classifiers"
Raudys, Šarūnas. Statistical and Neural Classifiers. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0359-2.
Pełny tekst źródłaLearning and using Japanese numbers. Lincolnwood, Ill., USA: Passport Books, 1996.
Znajdź pełny tekst źródłaSharma, C. D. Classified catalogue code in theory and practice. Wyd. 2. Jodhpur, India: Scientific Publishers, 1990.
Znajdź pełny tekst źródłaLearning kernel classifiers: Theory and algorithms. Cambridge, Mass: MIT Press, 2002.
Znajdź pełny tekst źródłaC, Carter Ruth, red. Education and training for catalogers and classifiers. New York: Haworth Press, 1987.
Znajdź pełny tekst źródłaCummings, James. Classified classics. Los Angeles: Price/Stern/Sloan, 1987.
Znajdź pełny tekst źródłaDaniels, B. J. Classified Christmas. Toronto, Ontario: Harlequin, 2007.
Znajdź pełny tekst źródła(Army), Senior National Representatives. Defense, information exchange: Memorandum of understanding between the United States of America and other governments, signed at Washington, London, Paris and Bonn October 19, November 13 and 27, 1995 and January 9, 1996 with attachments and an understanding. Washington, D.C: Dept. of State, 2003.
Znajdź pełny tekst źródłaXu, Dan, red. Plurality and Classifiers across Languages in China. Berlin, Boston: DE GRUYTER, 2012. http://dx.doi.org/10.1515/9783110293982.
Pełny tekst źródłaXu, Dan. Plurality and classifiers across languages in China. Berlin: De Gruyter Mouton, 2012.
Znajdź pełny tekst źródłaCzęści książek na temat "ANN Classifiers"
Bakraouy, Zineb, Amine Baina i Mostafa Bellafkih. "Agreement-Broker: Performance Analysis Using KNN, SVM, and ANN Classifiers". W Advances in Intelligent Systems and Computing, 868–79. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73689-7_82.
Pełny tekst źródłaDutta, Munmi, Chayashree Patgiri, Mousmita Sarma i Kandarpa Kumar Sarma. "Closed-Set Text-Independent Speaker Identification System Using Multiple ANN Classifiers". W Advances in Intelligent Systems and Computing, 377–85. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11933-5_41.
Pełny tekst źródłaWalse, Kishor H., Rajiv V. Dharaskar i Vilas M. Thakare. "PCA Based Optimal ANN Classifiers for Human Activity Recognition Using Mobile Sensors Data". W Proceedings of First International Conference on Information and Communication Technology for Intelligent Systems: Volume 1, 429–36. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30933-0_43.
Pełny tekst źródłaRashmi i Udayan Ghose. "Hybrid Entropy Method for Large Data Set Reduction Using MLP-ANN and SVM Classifiers". W Data Science and Analytics, 49–63. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5827-6_5.
Pełny tekst źródłaNiranjana Murthy, H. S., i M. Meenakshi. "Comparison between ANN-Based Heart Stroke Classifiers Using Varied Folds Data Set Cross-Validation". W Advances in Intelligent Systems and Computing, 693–99. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-2012-1_74.
Pełny tekst źródłaKim, Tae-Kyun, i Roberto Cipolla. "Multiple Classifier Boosting and Tree-Structured Classifiers". W Machine Learning for Computer Vision, 163–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28661-2_7.
Pełny tekst źródłaYang, Ai-min, Yong-mei Zhou i Min Tang. "A Classifier Ensemble Method for Fuzzy Classifiers". W Fuzzy Systems and Knowledge Discovery, 784–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11881599_97.
Pełny tekst źródłaJamnejad, Mohammad Iman, Sajad Parvin, Ali Heidarzadegan i Mohsen Moshki. "A Meta Classifier by Clustering of Classifiers". W Nature-Inspired Computation and Machine Learning, 140–51. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13650-9_13.
Pełny tekst źródłaCai, ChenWei, Dickson Keddy Wornyo, Liangjun Wang i XiangJun Shen. "Building Weighted Classifier Ensembles Through Classifiers Pruning". W Communications in Computer and Information Science, 131–39. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8530-7_13.
Pełny tekst źródłaRamos-Pollán, Raúl, Miguel Ángel Guevara-López i Eugénio Oliveira. "Introducing ROC Curves as Error Measure Functions: A New Approach to Train ANN-Based Biomedical Data Classifiers". W Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, 517–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16687-7_68.
Pełny tekst źródłaStreszczenia konferencji na temat "ANN Classifiers"
Aswin, K. S., Manav Purushothaman, Polisetty Sritharani i Angel T. S. "ANN and Deep Learning Classifiers for BCI applications". W 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT). IEEE, 2022. http://dx.doi.org/10.1109/icicict54557.2022.9917834.
Pełny tekst źródłaKarimi, M., M. Banejad, H. Hassanpour i A. Moeini. "Classification of power system faults using ANN classifiers". W Energy Conference (IPEC 2010). IEEE, 2010. http://dx.doi.org/10.1109/ipecon.2010.5697048.
Pełny tekst źródłaEkbote, Juhi, i Mahasweta Joshi. "Indian sign language recognition using ANN and SVM classifiers". W 2017 4th International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS). IEEE, 2017. http://dx.doi.org/10.1109/iciiecs.2017.8276111.
Pełny tekst źródłaOmrani, Takwa, Adel Dallali, Belgacem Chibani Rhaimi i Jaouhar Fattahi. "Fusion of ANN and SVM classifiers for network attack detection". W 2017 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). IEEE, 2017. http://dx.doi.org/10.1109/sta.2017.8314974.
Pełny tekst źródłaAiordachioaie, Dorel. "On Thermal Image Classification with ANN and Similarity Based Classifiers". W 2022 International Conference on Communications, Information, Electronic and Energy Systems (CIEES). IEEE, 2022. http://dx.doi.org/10.1109/ciees55704.2022.9990680.
Pełny tekst źródłaIzquierdo, R., I. Parra, J. Munoz-Bulnes, D. Fernandez-Llorca i M. A. Sotelo. "Vehicle trajectory and lane change prediction using ANN and SVM classifiers". W 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2017. http://dx.doi.org/10.1109/itsc.2017.8317838.
Pełny tekst źródłaHarini, V., Nayana N. Patil i H. M. Rajashekar Swamy. "Comparison of Bayesian and ANN Classifiers for Crack Detection in Columns". W 2020 4th International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech). IEEE, 2020. http://dx.doi.org/10.1109/iementech51367.2020.9270084.
Pełny tekst źródłaMahima i N. B. Padmavathi. "Comparative study of kernel SVM and ANN classifiers for brain neoplasm classification". W 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT). IEEE, 2017. http://dx.doi.org/10.1109/icicict1.2017.8342608.
Pełny tekst źródłaAkhmedova, Shakhnaz, i Eugene Semenkin. "ANN-based Classifiers Automatically Generated by New Multi-objective Bionic Algorithm". W 12th International Conference on Informatics in Control, Automation and Robotics. SCITEPRESS - Science and and Technology Publications, 2015. http://dx.doi.org/10.5220/0005571603100317.
Pełny tekst źródłaSovierzoski, Miguel Antonio, Fernanda Isabel Marques Argoud i Fernando Mendes de Azevedo. "Evaluation of ANN Classifiers During Supervised Training with ROC Analysis and Cross Validation". W 2008 International Conference on Biomedical Engineering And Informatics (BMEI). IEEE, 2008. http://dx.doi.org/10.1109/bmei.2008.251.
Pełny tekst źródłaRaporty organizacyjne na temat "ANN Classifiers"
Searcy, Stephen W., i Kalman Peleg. Adaptive Sorting of Fresh Produce. United States Department of Agriculture, sierpień 1993. http://dx.doi.org/10.32747/1993.7568747.bard.
Pełny tekst źródłaUmunoza Gasana, Emelyne, Dietrich von Rosen i Martin Singull. Edgeworth-type expansion of the density of the classifier when growth curves are classified via likelihood. Linköping University Electronic Press, maj 2023. http://dx.doi.org/10.3384/lith-mat-r-2023-02.
Pełny tekst źródłaOstendorf, M., L. Atlas, R. Fish, O. Cetin, S. Sukittanon i G. D. Bernard. Joint Use of Dynamical Classifiers and Ambiguity Plane Features. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2001. http://dx.doi.org/10.21236/ada436824.
Pełny tekst źródłaDube, Arindrajit, Ethan Kaplan i Suresh Naidu. Coups, Corporations, and Classified Information. Cambridge, MA: National Bureau of Economic Research, kwiecień 2011. http://dx.doi.org/10.3386/w16952.
Pełny tekst źródłaRangwala, Huzefa, i George Karypis. Building Multiclass Classifiers for Remote Homology Detection and Fold Recognition. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2006. http://dx.doi.org/10.21236/ada446086.
Pełny tekst źródłaWu, Jin Chu, i Raghu N. Kacker. Standard Errors and Significance Testing in Data Analysis for Testing Classifiers. National Institute of Standards and Technology, lipiec 2021. http://dx.doi.org/10.6028/nist.ir.8383.
Pełny tekst źródłaNelson, Bruce, i Ammon Birenzvigo. Linguistic-Fuzzy Classifier for Discrimination and Confidence Value Estimation. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2004. http://dx.doi.org/10.21236/ada426951.
Pełny tekst źródłaHines, Paul C., i Carolyn M. Binder. Automatic Classification of Cetacean Vocalizations Using an Aural Classifier. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2012. http://dx.doi.org/10.21236/ada573485.
Pełny tekst źródłaHines, Paul C., i Carolyn M. Binder. Automatic Classification of Cetacean Vocalizations Using an Aural Classifier. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2013. http://dx.doi.org/10.21236/ada598331.
Pełny tekst źródłaHeisele, Bernd, Thomas Serre, Sayan Mukherjee i Tomaso Poggio. Feature Reduction and Hierarchy of Classifiers for Fast Object Detection in Video Images. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2001. http://dx.doi.org/10.21236/ada458821.
Pełny tekst źródła