Artykuły w czasopismach na temat „Anionic Nanoparticles”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Anionic Nanoparticles”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Singh, Himanshi, Sugam Kumar i Vinod K. Aswal. "Interplay of interactions in nanoparticle–surfactant complexes in aqueous salt solution". Journal of Applied Physics 132, nr 22 (14.12.2022): 224701. http://dx.doi.org/10.1063/5.0118615.
Pełny tekst źródłaKanapina, A. E. "FEATURES OF THE DECAY OF EXCITED STATES OF IONIC DYES IN THE NEAR FIELD OF METAL NANOPARTICLES". Eurasian Physical Technical Journal 20, nr 2 (44) (21.06.2023): 106–11. http://dx.doi.org/10.31489/2023no2/106-111.
Pełny tekst źródłaBaig, Mirza Wasif, i Muhammad Siddiq. "Quantum Mechanics of In Situ Synthesis of Metal Nanoparticles within Anionic Microgels". Journal of Theoretical Chemistry 2013 (25.12.2013): 1–5. http://dx.doi.org/10.1155/2013/410417.
Pełny tekst źródłaRathod, Prakash B., Ashok K. Pandey, Sher Singh Meena i Anjali A. Athawale. "Quaternary ammonium bearing hyper-crosslinked polymer encapsulation on Fe3O4 nanoparticles". RSC Advances 6, nr 26 (2016): 21317–25. http://dx.doi.org/10.1039/c6ra01543c.
Pełny tekst źródłaRodrigues, João M. M., Andreia S. F. Farinha, Zhi Lin, José A. S. Cavaleiro, Augusto C. Tome i Joao P. C. Tome. "Phthalocyanine-Functionalized Magnetic Silica Nanoparticles as Anion Chemosensors". Sensors 21, nr 5 (26.02.2021): 1632. http://dx.doi.org/10.3390/s21051632.
Pełny tekst źródłaSato, Takumi, i Yoshihiko Murakami. "Temperature-Responsive Polysaccharide Microparticles Containing Nanoparticles: Release of Multiple Cationic/Anionic Compounds". Materials 15, nr 13 (5.07.2022): 4717. http://dx.doi.org/10.3390/ma15134717.
Pełny tekst źródłaUchida, Noriyuki, Masayoshi Yanagi i Hiroki Hamada. "Size-Tunable Paclitaxel Nanoparticles Stabilized by Anionic Phospholipids for Transdermal Delivery Applications". Natural Product Communications 15, nr 3 (1.03.2020): 1934578X1990068. http://dx.doi.org/10.1177/1934578x19900684.
Pełny tekst źródłaXing, Huiping, Jianwei Wang, Ouya Ma, Xiaolian Chao, Yajun Zhou, Yuhu Li i Zhihui Jia. "Hydroxypropyltrimethyl Ammonium Chloride Chitosan Nanoparticles Coatings for Reinforcement and Concomitant Inhibition of Anionic Water-Sensitive Dyes Migration on Fragile Paper Documents". Polymers 14, nr 18 (6.09.2022): 3717. http://dx.doi.org/10.3390/polym14183717.
Pełny tekst źródłaForeman-Ortiz, Isabel U., Dongyue Liang, Elizabeth D. Laudadio, Jorge D. Calderin, Meng Wu, Puspam Keshri, Xianzhi Zhang i in. "Anionic nanoparticle-induced perturbation to phospholipid membranes affects ion channel function". Proceedings of the National Academy of Sciences 117, nr 45 (26.10.2020): 27854–61. http://dx.doi.org/10.1073/pnas.2004736117.
Pełny tekst źródłaMiyamoto, Yoshitaka, Yumie Koshidaka, Katsutoshi Murase, Shoichiro Kanno, Hirofumi Noguchi, Kenji Miyado, Takeshi Ikeya i in. "Functional Evaluation of 3D Liver Models Labeled with Polysaccharide Functionalized Magnetic Nanoparticles". Materials 15, nr 21 (5.11.2022): 7823. http://dx.doi.org/10.3390/ma15217823.
Pełny tekst źródłaGanea, Gabriela M., Cristina M. Sabliov, Abiodun O. Ishola, Sayo O. Fakayode i Isiah M. Warner. "Experimental Design and Multivariate Analysis for Optimizing Poly(d,l-lactide-co-glycolide) (PLGA) Nanoparticle Synthesis Using Molecular Micelles". Journal of Nanoscience and Nanotechnology 8, nr 1 (1.01.2008): 280–92. http://dx.doi.org/10.1166/jnn.2008.18129.
Pełny tekst źródłaBehyan, Shirin, Olga Borozenko, Abdullah Khan, Manon Faral, Antonella Badia i Christine DeWolf. "Nanoparticle-induced structural changes in lung surfactant membranes: an X-ray scattering study". Environmental Science: Nano 5, nr 5 (2018): 1218–30. http://dx.doi.org/10.1039/c8en00189h.
Pełny tekst źródłaUchida, Noriyuki, Masayoshi Yanagi i Hiroki Hamada. "Transdermal Delivery of Anionic Phospholipid Nanoparticles Containing Fullerene". Natural Product Communications 17, nr 2 (luty 2022): 1934578X2210784. http://dx.doi.org/10.1177/1934578x221078444.
Pełny tekst źródłade Freitas, Erika Regina Leal, Paula Roberta Otaviano Soares, Rachel de Paula Santos, Regiane Lopes dos Santos, Joel Rocha da Silva, Elaine Paulucio Porfirio, Sônia N. Báo, Emilia Celma de Oliveira Lima, Paulo César Morais i Lidia Andreu Guillo. "In Vitro Biological Activities of Anionic γ-Fe2O3 Nanoparticles on Human Melanoma Cells". Journal of Nanoscience and Nanotechnology 8, nr 5 (1.05.2008): 2385–91. http://dx.doi.org/10.1166/jnn.2008.275.
Pełny tekst źródłaDaud, Muhammad, Zahiruddin Khan, Aisha Ashgar, M. Ihsan Danish i Ishtiaq A. Qazi. "Comparing and Optimizing Nitrate Adsorption from Aqueous Solution Using Fe/Pt Bimetallic Nanoparticles and Anion Exchange Resins". Journal of Nanotechnology 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/985984.
Pełny tekst źródłaSoto, Ernesto R., Abaigeal C. Caras, Lindsey C. Kut, Melissa K. Castle i Gary R. Ostroff. "Glucan Particles for Macrophage Targeted Delivery of Nanoparticles". Journal of Drug Delivery 2012 (13.10.2012): 1–13. http://dx.doi.org/10.1155/2012/143524.
Pełny tekst źródłaŠimšíková, Michaela, Marián Antalík, Mária Kaňuchová i Jiří Škvarla. "Anionic 11-mercaptoundecanoic acid capped ZnO nanoparticles". Applied Surface Science 282 (październik 2013): 342–47. http://dx.doi.org/10.1016/j.apsusc.2013.05.130.
Pełny tekst źródłaXu, Bolei, Grazia Gonella, Brendan G. DeLacy i Hai-Lung Dai. "Adsorption of Anionic Thiols on Silver Nanoparticles". Journal of Physical Chemistry C 119, nr 10 (27.02.2015): 5454–61. http://dx.doi.org/10.1021/jp511997w.
Pełny tekst źródłaWilhelm, Claire, i Florence Gazeau. "Universal cell labelling with anionic magnetic nanoparticles". Biomaterials 29, nr 22 (sierpień 2008): 3161–74. http://dx.doi.org/10.1016/j.biomaterials.2008.04.016.
Pełny tekst źródłaYuan, Hong, Wei Zhang, Yong-Zhong Du i Fu-Qiang Hu. "Ternary nanoparticles of anionic lipid nanoparticles/protamine/DNA for gene delivery". International Journal of Pharmaceutics 392, nr 1-2 (15.06.2010): 224–31. http://dx.doi.org/10.1016/j.ijpharm.2010.03.025.
Pełny tekst źródłaFei, Yang, Mary Gonzalez i Manouchehr Haghighi. "Free drainage of foam mixed with proppants in the presence of nanoparticles". APPEA Journal 58, nr 2 (2018): 710. http://dx.doi.org/10.1071/aj17047.
Pełny tekst źródłaZHAO, TIEJUN, HEZHONG CHEN, LIXIN YANG, HAI JIN, ZHIGANG LI, LIN HAN, FANGLIN LU i ZHIYUN XU. "DDAB-MODIFIED TPGS-b-(PCL-ran-PGA) NANOPARTICLES AS ORAL ANTICANCER DRUG CARRIER FOR LUNG CANCER CHEMOTHERAPY". Nano 08, nr 02 (kwiecień 2013): 1350014. http://dx.doi.org/10.1142/s1793292013500148.
Pełny tekst źródłaAmigoni, Loredana, Lucia Salvioni, Barbara Sciandrone, Marco Giustra, Chiara Pacini, Paolo Tortora, Davide Prosperi, Miriam Colombo i Maria Elena Regonesi. "Impact of Tuning the Surface Charge Distribution on Colloidal Iron Oxide Nanoparticle Toxicity Investigated in Caenorhabditis elegans". Nanomaterials 11, nr 6 (11.06.2021): 1551. http://dx.doi.org/10.3390/nano11061551.
Pełny tekst źródłaZegan, Georgeta, Elena Mihaela Carausu, Loredana Golovcencu, Alina Sodor Botezatu, Eduard Radu Cernei i Daniela Anistoroaei. "Antibiotic-anionic Clay Matrix Used for Drug Controlled Release". Revista de Chimie 69, nr 2 (15.03.2018): 321–23. http://dx.doi.org/10.37358/rc.18.2.6098.
Pełny tekst źródłaIancu, Stefania D., Andrei Stefancu, Vlad Moisoiu, Loredana F. Leopold i Nicolae Leopold. "The role of Ag+, Ca2+, Pb2+ and Al3+ adions in the SERS turn-on effect of anionic analytes". Beilstein Journal of Nanotechnology 10 (27.11.2019): 2338–45. http://dx.doi.org/10.3762/bjnano.10.224.
Pełny tekst źródłaChua, Ming Jing, i Yoshinori Murakami. "Influence of Surfactants and Dissolved Gases on the Silver Nanoparticle Plasmon Resonance Absorption Spectra Formed by the Laser Ablation Processes". ISRN Physical Chemistry 2013 (2.06.2013): 1–7. http://dx.doi.org/10.1155/2013/547378.
Pełny tekst źródłaAl-Anssari, Sarmad, Zain-UL-Abedin Arain, Haider Abbas Shanshool, Alireza Keshavarz i Mohammad Sarmadivaleh. "Synergistic effect of hydrophilic nanoparticles and anionic surfactant on the stability and viscoelastic properties of oil in water (o/w) emulations; application for enhanced oil recovery (EOR)". Journal of Petroleum Research and Studies 10, nr 4 (21.12.2020): 33–53. http://dx.doi.org/10.52716/jprs.v10i4.366.
Pełny tekst źródłaZhao, Fang, Ya Qiong Zhao, Yuan Yuan Li i Gang Ni. "Study on the Dispersion of Nanometer TiO2 Powder by Sol-Gel Method". Advanced Materials Research 599 (listopad 2012): 104–7. http://dx.doi.org/10.4028/www.scientific.net/amr.599.104.
Pełny tekst źródłaRaj, S. Irudhaya, Adhish Jaiswal i Imran Uddin. "Tunable porous silica nanoparticles as a universal dye adsorbent". RSC Advances 9, nr 20 (2019): 11212–19. http://dx.doi.org/10.1039/c8ra10428j.
Pełny tekst źródłaEftekhari, Milad, Karin Schwarzenberger, Aliyar Javadi i Kerstin Eckert. "The influence of negatively charged silica nanoparticles on the surface properties of anionic surfactants: electrostatic repulsion or the effect of ionic strength?" Physical Chemistry Chemical Physics 22, nr 4 (2020): 2238–48. http://dx.doi.org/10.1039/c9cp05475h.
Pełny tekst źródłaSalassi, Sebastian, Ester Canepa, Riccardo Ferrando i Giulia Rossi. "Anionic nanoparticle-lipid membrane interactions: the protonation of anionic ligands at the membrane surface reduces membrane disruption". RSC Advances 9, nr 25 (2019): 13992–97. http://dx.doi.org/10.1039/c9ra02462j.
Pełny tekst źródłaOnizuka, Takahiro, Mikihisa Fukuda i Tomohiro Iwasaki. "Effects of Coexisting Anions on the Formation of Hematite Nanoparticles in a Hydrothermal Process with Urea Hydrolysis and the Congo Red Dye Adsorption Properties". Powders 2, nr 2 (8.05.2023): 338–52. http://dx.doi.org/10.3390/powders2020020.
Pełny tekst źródłaUchida, Noriyuki, Masayoshi Yanagi i Hiroki Hamada. "Nanoformulation of Fullerene Using an Anionic Phospholipid". Natural Product Communications 17, nr 1 (styczeń 2022): 1934578X2110528. http://dx.doi.org/10.1177/1934578x211052868.
Pełny tekst źródłaMa, Yanhang, Lei Xing, Haoquan Zheng i Shunai Che. "Anionic−Cationic Switchable Amphoteric Monodisperse Mesoporous Silica Nanoparticles". Langmuir 27, nr 2 (18.01.2011): 517–20. http://dx.doi.org/10.1021/la103979c.
Pełny tekst źródłaMaity, Amit Ranjan, i Nikhil R. Jana. "Chitosan−Cholesterol-Based Cellular Delivery of Anionic Nanoparticles". Journal of Physical Chemistry C 115, nr 1 (14.12.2010): 137–44. http://dx.doi.org/10.1021/jp108828c.
Pełny tekst źródłaHur, Jae Uk, Jae Seok Choi, Sung-Churl Choi i Gye Seok An. "Highly dispersible Fe3O4 nanoparticles via anionic surface modification". Journal of the Korean Ceramic Society 57, nr 1 (12.12.2019): 80–84. http://dx.doi.org/10.1007/s43207-019-00001-3.
Pełny tekst źródłaUchida, Noriyuki, Masayoshi Yanagi i Hiroki Hamada. "Piceid Nanoparticles Stabilized by Anionic Phospholipids for Transdermal Delivery". Natural Product Communications 15, nr 5 (maj 2020): 1934578X2092557. http://dx.doi.org/10.1177/1934578x20925578.
Pełny tekst źródłaWatanabe, Hideo, Masayoshi Fuji, Atsuko Tada i Minoru Takahashi. "Electrophoretic and Electrolytic Deposition of Gold Nanoparticles on a Graphite Carbon Plate". Key Engineering Materials 412 (czerwiec 2009): 71–75. http://dx.doi.org/10.4028/www.scientific.net/kem.412.71.
Pełny tekst źródłaLu, Bin, Tyler Smith i Jacob J. Schmidt. "Nanoparticle–lipid bilayer interactions studied with lipid bilayer arrays". Nanoscale 7, nr 17 (2015): 7858–66. http://dx.doi.org/10.1039/c4nr06892k.
Pełny tekst źródłaJiang, Bing, Xiaohan Ban, Qian Wang, Kui Cheng, Kai Zhu, Ke Ye, Guiling Wang, Dianxue Cao i Jun Yan. "Anionic P-substitution toward ternary Ni–S–P nanoparticles immobilized graphene with ultrahigh rate and long cycle life for hybrid supercapacitors". Journal of Materials Chemistry A 7, nr 42 (2019): 24374–88. http://dx.doi.org/10.1039/c9ta09902f.
Pełny tekst źródłaRotan, Olga, Katharina N. Severin, Simon Pöpsel, Alexander Peetsch, Melisa Merdanovic, Michael Ehrmann i Matthias Epple. "Uptake of the proteins HTRA1 and HTRA2 by cells mediated by calcium phosphate nanoparticles". Beilstein Journal of Nanotechnology 8 (7.02.2017): 381–93. http://dx.doi.org/10.3762/bjnano.8.40.
Pełny tekst źródłaZhang, Hang, Junaid Muhammad, Kai Liu, Robin H. A. Ras i Olli Ikkala. "Light-induced reversible hydrophobization of cationic gold nanoparticles via electrostatic adsorption of a photoacid". Nanoscale 11, nr 30 (2019): 14118–22. http://dx.doi.org/10.1039/c9nr05416b.
Pełny tekst źródłaPerret, Florent, Yannick Tauran, Kinga Suwinska, Beomjoon Kim, Cyrielle Chassain-Nely, Maxime Boulet i Anthony W. Coleman. "Molecular Recognition and Transport of Active Pharmaceutical Ingredients on Anionic Calix[4]arene-Capped Silver Nanoparticles". Journal of Chemistry 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/191828.
Pełny tekst źródłaLievonen, Miikka, Juan José Valle-Delgado, Maija-Liisa Mattinen, Eva-Lena Hult, Kalle Lintinen, Mauri A. Kostiainen, Arja Paananen, Géza R. Szilvay, Harri Setälä i Monika Österberg. "A simple process for lignin nanoparticle preparation". Green Chemistry 18, nr 5 (2016): 1416–22. http://dx.doi.org/10.1039/c5gc01436k.
Pełny tekst źródłaCarnerero, Jose M., Aila Jimenez-Ruiz, Elia M. Grueso i Rafael Prado-Gotor. "Understanding and improving aggregated gold nanoparticle/dsDNA interactions by molecular spectroscopy and deconvolution methods". Physical Chemistry Chemical Physics 19, nr 24 (2017): 16113–23. http://dx.doi.org/10.1039/c7cp02219k.
Pełny tekst źródłaAkter, Salma, Mohammad Abu Sayem Karal, Sharif Hasan, Md Kabir Ahamed, Marzuk Ahmed i Shareef Ahammed. "Effects of cholesterol on the anionic magnetite nanoparticle-induced deformation and poration of giant lipid vesicles". RSC Advances 12, nr 44 (2022): 28283–94. http://dx.doi.org/10.1039/d2ra03199j.
Pełny tekst źródłaNing, Yin, Daniel J. Whitaker, Charlotte J. Mable, Matthew J. Derry, Nicholas J. W. Penfold, Alexander N. Kulak, David C. Green, Fiona C. Meldrum i Steven P. Armes. "Anionic block copolymer vesicles act as Trojan horses to enable efficient occlusion of guest species into host calcite crystals". Chemical Science 9, nr 44 (2018): 8396–401. http://dx.doi.org/10.1039/c8sc03623c.
Pełny tekst źródłaManin, Andrey, Daniel Golubenko, Svetlana Novikova i Andrey Yaroslavtsev. "Composite Anion Exchange Membranes Based on Quaternary Ammonium-Functionalized Polystyrene and Cerium(IV) Phosphate with Improved Monovalent-Ion Selectivity and Antifouling Properties". Membranes 13, nr 7 (26.06.2023): 624. http://dx.doi.org/10.3390/membranes13070624.
Pełny tekst źródłaLall, Aastha, Arnaud Kamdem Tamo, Ingo Doench, Laurent David, Paula Nunes de Oliveira, Christian Gorzelanny i Anayancy Osorio-Madrazo. "Nanoparticles and Colloidal Hydrogels of Chitosan–Caseinate Polyelectrolyte Complexes for Drug-Controlled Release Applications". International Journal of Molecular Sciences 21, nr 16 (5.08.2020): 5602. http://dx.doi.org/10.3390/ijms21165602.
Pełny tekst źródłaMani, Hemalatha, Yi-Cheng Chen, Yen-Kai Chen, Wei-Lin Liu, Shih-Yen Lo, Shu-Hsuan Lin i Je-Wen Liou. "Nanosized Particles Assembled by a Recombinant Virus Protein Are Able to Encapsulate Negatively Charged Molecules and Structured RNA". Polymers 13, nr 6 (11.03.2021): 858. http://dx.doi.org/10.3390/polym13060858.
Pełny tekst źródła