Gotowa bibliografia na temat „Animal model of infection”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Animal model of infection”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Animal model of infection"
Zak, O., i T. O'Reilly. "Animal infection models and ethics--the perfect infection model". Journal of Antimicrobial Chemotherapy 31, suppl D (1.01.1993): 193–205. http://dx.doi.org/10.1093/jac/31.suppl_d.193.
Pełny tekst źródłaHan, Mingyuan, Charu Rajput, Tomoko Ishikawa, Caitlin Jarman, Julie Lee i Marc Hershenson. "Small Animal Models of Respiratory Viral Infection Related to Asthma". Viruses 10, nr 12 (1.12.2018): 682. http://dx.doi.org/10.3390/v10120682.
Pełny tekst źródłaGlupczynski, Y., i A. Burette. "Animal model of Helicobacter pylori infection." Antimicrobial Agents and Chemotherapy 34, nr 7 (1.07.1990): 1462. http://dx.doi.org/10.1128/aac.34.7.1462.
Pełny tekst źródłaJanitschke, Klaus, A. Julio Martinez, Govinda S. Visvesvara i Frederick Schuster. "Animal Model Balamuthia Mandrillaris CNS Infection". Journal of Neuropathology and Experimental Neurology 55, nr 7 (lipiec 1996): 815–21. http://dx.doi.org/10.1097/00005072-199607000-00006.
Pełny tekst źródłaHaenle, Maximilian, Carmen Zietz, Tobias Lindner, Kathleen Arndt, Anika Vetter, Wolfram Mittelmeier, Andreas Podbielski i Rainer Bader. "A Model of Implant-Associated Infection in the Tibial Metaphysis of Rats". Scientific World Journal 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/481975.
Pełny tekst źródłaIyer, Rajiv R., Noah Gorelick, Karen Carroll, Ari M. Blitz, Sarah Beck, Caroline M. Garrett, Audrey Monroe i in. "Evaluation of an in vivo model for ventricular shunt infection: a pilot study using a novel antimicrobial-loaded polymer". Journal of Neurosurgery 131, nr 2 (sierpień 2019): 587–95. http://dx.doi.org/10.3171/2018.1.jns172523.
Pełny tekst źródłaKenney, Scott P., i Xiang-Jin Meng. "Hepatitis E Virus: Animal Models and Zoonosis". Annual Review of Animal Biosciences 7, nr 1 (15.02.2019): 427–48. http://dx.doi.org/10.1146/annurev-animal-020518-115117.
Pełny tekst źródłaShimamura, Tsuyoshi, Nobuo Kubota i Kazutoshi Shibuya. "Animal Model of Dermatophytosis". Journal of Biomedicine and Biotechnology 2012 (2012): 1–11. http://dx.doi.org/10.1155/2012/125384.
Pełny tekst źródłaGroseth, Allison, Don Gardner, Kimberly Meade-White, Susanne Amler i Hideki Ebihara. "Immunocompetent hamsters as a model for orthobunyavirus-induced neuroinvasion and neuropathology". PLOS Neglected Tropical Diseases 17, nr 5 (26.05.2023): e0011355. http://dx.doi.org/10.1371/journal.pntd.0011355.
Pełny tekst źródłaTSUKIYAMA-KOHARA, Kyoko, i Michinori KOHARA. "Animal model for hepatitis C virus infection". Uirusu 65, nr 2 (2015): 255–62. http://dx.doi.org/10.2222/jsv.65.255.
Pełny tekst źródłaRozprawy doktorskie na temat "Animal model of infection"
Maglennon, G. A. "Study of papillomavirus latent infection in an animal model". Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1306763/.
Pełny tekst źródłaWen, Li. "Immune responses to vaginal viral infection in a mouse model". Thesis, The University of Sydney, 1998. https://hdl.handle.net/2123/27666.
Pełny tekst źródłaShrief, Raghdaa. "Surrogate Markers of Infection Suitable for Monitoring Infectious Burden in Animal Models of Aspergillosis". Thesis, University of Manchester, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.525921.
Pełny tekst źródłaShanmuganathan, Subathra Devi. "The woodchuck as an animal model for the study of the immune response in hepadna virus infection". Thesis, University College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298130.
Pełny tekst źródłaCARRARO, MONICA. "Identification of infection biomarkers in a murine model of pneumonia by Streptococcus pneumoniae". Doctoral thesis, Università di Siena, 2018. http://hdl.handle.net/11365/1037742.
Pełny tekst źródłaShen, Hong. "Hepatitis C infection models". Thesis, Paris 5, 2012. http://www.theses.fr/2012PA05T016.
Pełny tekst źródłaHepatitis C virus (HCV) is one of the major causes of liver disease all over the world which has a high risk to progress to cirrhosis and hepatocellular carcinoma. Currently, the licensed standard treatment of HCV infection is Pegylated-interferon (peg-IFN) and ribavirin. Although the sustained viral response (SVR) rate of treatment has improved during these years, this therapy is not effective in all patients. In addition, several toxic side effects, complication and high cost limit the patient compliance and the efficacy of the treatment. There is no easy model of HCV infection and it is necessary to develop useful in vitro and in vivo models to study the pathobiology of HCV infection, including early events of acute infection (viral entry, immunological mechanisms, and genetic predictors) as well as the evaluation of the potency of the HCV antiviral drugs. We report here in our efforts in developing suitable models of HCV infection. In a first step, we preliminary established a small animal model to study HCV infection. Tupaia is a small, closed related to primate and cost-effective animal. In our work, we investigated the susceptibly of tupaia to HCV infection. Twelve adult tupaias were inoculated with native HCV from patient serum and full-length HCV RNA (Genotype 1a). Three young tupaias were artificially breeded for a month and then inoculated by native HCV from patient serum. HCV RNA, anti-HCV and HCV quasi species evolution were determined in the animal before and after inoculation. Transient and intermittent infection occurred in two among 3 young tupaias and HCV chronic infection occurred in four among 12 adult tupaias. Tupaia should represent a useful model for study HCV chronic infection. In a second step, an in vitro culture system of primary tupaia hepatocytes has been established in which HCV infection could be blocked neither by the soluble CD81 nor by antibodies against CD81. To understand these results, we cloned, sequenced the large extracellular loop (LEL) of tupaia CD81 and analyzed the interaction of HCV E2 with the tupaia CD81 LEL by enzyme-linked immunosorbent assay (EIA). We found that in the tupaia the amino acids sequence of HCV CD81 LEL presented in 6 different amino acid residues compared with human CD81 LEL sequence and the CD81 LEL ability to bind to HCV E2 was also decreased. The different structure of CD81 between human and tupaia could explain the alteration of the interaction between HCV E2 and CD81. This result demonstrated an important role of CD81 LEL for HCV entry. In a third step, we developed an ex vivo model of human liver slices culture and their infection with HCV. The development of human cultured HCV-replication-permissive hepatocarcinoma cell lines has provided important new virological tools to study the mechanisms of HCV infection; however this experimental model remains distantly related to physiological and pathological conditions. Here, we report the development of a new ex vivo model using human adult liver slices culture, demonstrating, for the first time, the ability of primary isolates to undergo de novo viral replication with the production of high titer infectious virus, as well as JFH-1, H77/C3, Con1/C3 (HCVcc). This experimental model was validated by demonstrating the HCV neutralization or HCV inhibition, in a dose-dependent manner, either by CD81 or E2 specific antibodies or convalescent serum from a recovered HCV patient, or by anti-viral drugs. This new ex vivo model represents a powerful tool for studying the viral life cycle, dynamics of virus spread in the liver and also for evaluating the efficacy of the new antiviral drugs. In the last step, we evaluated the efficacy of the new antiviral drugs with our ex vivo model of human adult liver slices. HCV NS3/4A protease is essential for viral replication and has been one of the most important target for developing specific antiviral drug
Furr, Patricia Mary. "The development and value of animal models of mycoplasmal infection". Thesis, Open University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358598.
Pełny tekst źródłaPeterson, Christopher. "Evaluation of Therapeutics for an Enterovirus 71 Infection in an AG129 Mouse Model". DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/7278.
Pełny tekst źródłaXi, Jin [Verfasser], i Thomas [Akademischer Betreuer] Iftner. "An Out-bred Animal Model of Cottontail Rabbit Papillomavirus Latent Infection / Jin Xi ; Betreuer: Thomas Iftner". Tübingen : Universitätsbibliothek Tübingen, 2019. http://d-nb.info/1197610812/34.
Pełny tekst źródłaClasper, Jonathan Charles. "Secondary intramedullary nailing of the tibia in an animal model of an external fixator pin track infection". Thesis, University of Southampton, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268414.
Pełny tekst źródłaKsiążki na temat "Animal model of infection"
Axel, Schmidt, i Weber Olaf F, red. Animal testing in infectiology. Basel: Karger, 2001.
Znajdź pełny tekst źródłaAnn, Salzman Lois, red. Animal models of retrovirus infection and their relationship to AIDS. Orlando: Academic Press, 1986.
Znajdź pełny tekst źródłaJohnson-Delaney, Cathy A. Simian & human retroviruses in nonhuman primates: Infection, disease & animal model studies : a bibliography, 1988-1989 annual update. Seattle, Wash: Primate Information Center, Regional Primate Research Center, University of Washington, 1989.
Znajdź pełny tekst źródłaJohnson-Delaney, Cathy A. Simian & human retroviruses in nonhuman primates: Infection, disease & animal model studies : a bibliography, 1989-1990 annual update. Seattle, Wash: Primate Information Center, Regional Primate Research Center, University of Washington, c1990., 1990.
Znajdź pełny tekst źródłaJohnson-Delaney, Cathy A. Simian & human retroviruses in nonhuman primates: Infection, disease & animal model studies : a bibliography, 1988-1989 annual update. Seattle, Wash: Primate Information Center, Regional Primate Research Center, University of Washington, 1989.
Znajdź pełny tekst źródłaAnn, Salzman Lois, red. Animalmodels of retrovirus infection and their relationship to AIDS. Orlando: Academic Press, 1986.
Znajdź pełny tekst źródłaR, Swearengen James, red. Biodefense: Research methodology and animal models. Boca Raton, Fla: Taylor & Francis, 2006.
Znajdź pełny tekst źródłaJohnson-Delaney, Cathy A. Simian and human retroviruses in nonhuman primates: Infection, disease and animal model studies : a bibliography, 1991-1992 annual update. Seattle, Wash: Primate Information Center, Regional Primate Research Center, University of Washington, 1993.
Znajdź pełny tekst źródłaJohnson-Delaney, Cathy A. Simian and human retroviruses in nonhuman primates: Infection, disease and animal model studies : a bibliography, 1992-1993 annual update. Seattle, Wash: Primate Information Center, Regional Primate Research Center, University of Washington, 1994.
Znajdź pełny tekst źródłaJohnson-Delaney, Cathy A. Simian and human retroviruses in nonhuman primates: Infection, disease and animal model studies : a bibliography, 1990-1991 annual update. Seattle: Primate Information Center, Regional Primate Research Center, University of Washington, 1991.
Znajdź pełny tekst źródłaCzęści książek na temat "Animal model of infection"
Sharma, Karun, Babita Shashni, Meena K. Sakharkar, Kishore R. Sakharkar i Ramesh Chandra. "Animal Model of Cancer and Infection". W Post-genomic Approaches in Cancer and Nano Medicine, 85–100. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003339083-4.
Pełny tekst źródłaCalabro, Lorenzo, Cameron Lutton, Ahmed Fouad Seif El Din, R. Geoff Richards i T. Fintan Moriarty. "Animal Models of Orthopedic Implant-Related Infection". W Biomaterials Associated Infection, 273–304. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1031-7_12.
Pełny tekst źródłaLi, Huoming, i Hao Li. "Animal Models of Tuberculosis". W Vaccines for Neglected Pathogens: Strategies, Achievements and Challenges, 139–70. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-24355-4_7.
Pełny tekst źródłaBergin, Ingrid L., i James G. Fox. "Animal Models of Helicobacter pylori Infection". W Helicobacter pylori Infection and Immunity, 215–51. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0681-2_13.
Pełny tekst źródłaLeinonen, M., i P. Saikku. "Animal models for Chlamydia pneumoniae infection". W Chlamydia pneumoniae and Chronic Diseases, 19–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57195-4_4.
Pełny tekst źródłaLee, Ju Yup. "Animal Models of H. pylori Infection". W Helicobacter pylori, 537–46. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-706-2_55.
Pełny tekst źródłaHarvill, Eric T., i Tracy Nicholson. "Animal models". W Pertussis, 100–111. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198811879.003.0006.
Pełny tekst źródłaGudmundsson, S., i H. Erlendsdóttir. "Murine Thigh Infection Model". W Handbook of Animal Models of Infection, 137–44. Elsevier, 1999. http://dx.doi.org/10.1016/b978-012775390-4/50154-8.
Pełny tekst źródłaZimmerli, W. "Tissue Cage Infection Model". W Handbook of Animal Models of Infection, 409–17. Elsevier, 1999. http://dx.doi.org/10.1016/b978-012775390-4/50186-x.
Pełny tekst źródłaMatsumoto, Tetsuro. "Rat Bladder Infection Model". W Handbook of Animal Models of Infection, 447–51. Elsevier, 1999. http://dx.doi.org/10.1016/b978-012775390-4/50191-3.
Pełny tekst źródłaStreszczenia konferencji na temat "Animal model of infection"
Zulaziz, N., A. Azhim, H. Miyazaki, M. Kinoshita, N. Himeno, D. Saitoh i Y. Morimoto. "A novel animal model for subcutaneous soft tissue infection using temporally neutropenic lys-EGFP mice". W 2015 10th Asian Control Conference (ASCC). IEEE, 2015. http://dx.doi.org/10.1109/ascc.2015.7244500.
Pełny tekst źródłaLegostaev, S. S., E. V. Protopopova, R. Yu Lutkovsky i V. A. Svyatchenko. "STUDY OF THE EFFECTS OF SARS-COV-2 CO-INFECTION WITH A NON-PATHOGENIC VARIANT OF THE COXSACKIE A7 VIRUS (LEV-8 STRAIN) AND ENTEROVIRUS 71". W X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-256.
Pełny tekst źródłaTanwar, A., R. Chawla, M. Basu, R. Arora i HA Khan. "FRI0032 Curative effect of camellia sinensis (CS) against opportunistic infection in vulnerable animal model of rheumatoid arthritis". W Annual European Congress of Rheumatology, 14–17 June, 2017. BMJ Publishing Group Ltd and European League Against Rheumatism, 2017. http://dx.doi.org/10.1136/annrheumdis-2017-eular.1057.
Pełny tekst źródłaZhu, Banghe, Caitlin Guenther, Sunkuk Kwon, Eva M. Sevick-Muraca i Junghae Suh. "Using molecular imaging to assess the delivery and infection of protease activated virus in animal model of myocardial infarction". W SPIE BiOS, redaktorzy Guillermo J. Tearney, Kenton W. Gregory i Laura Marcu. SPIE, 2017. http://dx.doi.org/10.1117/12.2256760.
Pełny tekst źródłaWillett, Nick J., M. Alice Li, Brent A. Uhrig, Gordon L. Warren i Robert E. Guldberg. "Muscle Injury Attenuates BMP-2 Mediated Tissue Regeneration in a Novel Rat Model of Composite Bone and Muscle Injury". W ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53589.
Pełny tekst źródłaAltizer, Sonia M. "Monarchs as a model system for studying animal migration and infectious diseases". W 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.88949.
Pełny tekst źródłaCui, X., W. Xu, D. J. Pepper, J. Sun, J. Welsh i P. Eichacker. "The Effects of Obesity on Outcome in Preclinical Animal Models of Infection and Sepsis: A Systematic Review and Meta-Analysis". W American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a1698.
Pełny tekst źródłaNoval, Noval, Ali Rakhman Hakim i Ahmad Irawan. "Antipyretic Effects of (phaleria macrocarpa (scheff) boerl.) Infusa In Mice Galur Wistar As Animal Model". W 2nd Sari Mulia International Conference on Health and Sciences 2017 (SMICHS 2017) � One Health to Address the Problem of Tropical Infectious Diseases in Indonesia. Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/smichs-17.2017.44.
Pełny tekst źródłaBauer, Carla M., Caleb C. Zavitz, Kristen N. Lambert, Earl G. Brown, Karen L. Mossman i Martin R. Stämpfli. "Treating Viral Exacerbations Of COPD With Steroids: Lessons Learned From Animal Models Of Cigarette Smoke Exposure And Influenza A Virus Infection". W American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a1016.
Pełny tekst źródłaPadilo, Larisa P., Onega V. Ulianova, Galina Maslyakova, Alla Bucharskaya, Sergey Dobdin, Irina Subbotina, Anatoly Skripal i in. "Can the infection, caused by Chlamydia psittaci, produce the stimulation of the growth of a malignant tumor: studying by using t-LASCA technique on animal model". W Saratov Fall Meeting 2019: Optical and Nano-Technologies for Biology and Medicine, redaktorzy Valery V. Tuchin i Elina A. Genina. SPIE, 2020. http://dx.doi.org/10.1117/12.2563841.
Pełny tekst źródłaRaporty organizacyjne na temat "Animal model of infection"
Wang, Xinrun, Tianye Li, Xuechai Bai, Yun Zhu i Meiliang Zhang. Therapeutic prospect on umbilical cord mesenchymal stem cells in animal model with primary ovarian insufficiency: A meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, maj 2023. http://dx.doi.org/10.37766/inplasy2023.5.0075.
Pełny tekst źródłaSplitter, Gary A., Menachem Banai i Jerome S. Harms. Brucella second messenger coordinates stages of infection. United States Department of Agriculture, styczeń 2011. http://dx.doi.org/10.32747/2011.7699864.bard.
Pełny tekst źródłaShpigel, Nahum, Raul Barletta, Ilan Rosenshine i Marcelo Chaffer. Identification and characterization of Mycobacterium paratuberculosis virulence genes expressed in vivo by negative selection. United States Department of Agriculture, styczeń 2004. http://dx.doi.org/10.32747/2004.7696510.bard.
Pełny tekst źródłaFicht, Thomas, Gary Splitter, Menachem Banai i Menachem Davidson. Characterization of B. Melinensis REV 1 Attenuated Mutants. United States Department of Agriculture, grudzień 2000. http://dx.doi.org/10.32747/2000.7580667.bard.
Pełny tekst źródłaYogev, David, Ricardo Rosenbusch, Sharon Levisohn i Eitan Rapoport. Molecular Pathogenesis of Mycoplasma bovis and Mycoplasma agalactiae and its Application in Diagnosis and Control. United States Department of Agriculture, kwiecień 2000. http://dx.doi.org/10.32747/2000.7573073.bard.
Pełny tekst źródłaChejanovsky, Nor, i Bruce A. Webb. Potentiation of Pest Control by Insect Immunosuppression. United States Department of Agriculture, styczeń 2010. http://dx.doi.org/10.32747/2010.7592113.bard.
Pełny tekst źródłaFarmer, Roger E. A., i Konstantin Platonov. Animal Spirits in a Monetary Model. Cambridge, MA: National Bureau of Economic Research, marzec 2016. http://dx.doi.org/10.3386/w22136.
Pełny tekst źródłaMellies, Jay L. C. elegans as a Model for EPEC Infection. Fort Belvoir, VA: Defense Technical Information Center, listopad 2005. http://dx.doi.org/10.21236/ada441203.
Pełny tekst źródłaCabrera, Anahi Maldonado, Blayra Maldonado Cabrera, Dalia Isabel Sánchez Machado i Jaime López Cervantes. Wound healing therapeutic effect of chitosan nanofibers: a systematic review and meta- analysis of animal studies. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, październik 2022. http://dx.doi.org/10.37766/inplasy2022.10.0121.
Pełny tekst źródłaLi, Jiliang. Healing of Stress Fracture in an Animal Model. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2004. http://dx.doi.org/10.21236/ada433113.
Pełny tekst źródła