Artykuły w czasopismach na temat „ANDROID MALWARE CLASSIFICATION”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „ANDROID MALWARE CLASSIFICATION”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Pachhala, Nagababu, Subbaiyan Jothilakshmi i Bhanu Prakash Battula. "Android Malware Classification Using LSTM Model". Revue d'Intelligence Artificielle 36, nr 5 (23.12.2022): 761–67. http://dx.doi.org/10.18280/ria.360514.
Pełny tekst źródłaParajuli, Srijana, i Subarna Shakya. "Malware Detection and Classification Using Latent Semantic Indexing". Journal of Advanced College of Engineering and Management 4 (31.12.2018): 153–61. http://dx.doi.org/10.3126/jacem.v4i0.23205.
Pełny tekst źródłaAfifah, Nurul, i Deris Stiawan. "The Implementation of Deep Neural Networks Algorithm for Malware Classification". Computer Engineering and Applications Journal 8, nr 3 (24.09.2019): 189–202. http://dx.doi.org/10.18495/comengapp.v8i3.294.
Pełny tekst źródłaJiang, Changnan, Kanglong Yin, Chunhe Xia i Weidong Huang. "FedHGCDroid: An Adaptive Multi-Dimensional Federated Learning for Privacy-Preserving Android Malware Classification". Entropy 24, nr 7 (1.07.2022): 919. http://dx.doi.org/10.3390/e24070919.
Pełny tekst źródłaMas`ud, Mohd Zaki, Shahrin Sahib, ., Mohd Faizal Abdollah, Siti Rahayu Selamat i Robiah Yusof. "Android Malware Detection System Classification". Research Journal of Information Technology 6, nr 4 (1.04.2014): 325–41. http://dx.doi.org/10.3923/rjit.2014.325.341.
Pełny tekst źródłaNiu, Weina, Rong Cao, Xiaosong Zhang, Kangyi Ding, Kaimeng Zhang i Ting Li. "OpCode-Level Function Call Graph Based Android Malware Classification Using Deep Learning". Sensors 20, nr 13 (29.06.2020): 3645. http://dx.doi.org/10.3390/s20133645.
Pełny tekst źródłaKumar, Ajit, Vinti Agarwal, Shishir Kumar Shandilya, Andrii Shalaginov, Saket Upadhyay i Bhawna Yadav. "PACER: Platform for Android Malware Classification, Performance Evaluation and Threat Reporting". Future Internet 12, nr 4 (12.04.2020): 66. http://dx.doi.org/10.3390/fi12040066.
Pełny tekst źródłaSingh, Jaiteg, Deepak Thakur, Farman Ali, Tanya Gera i Kyung Sup Kwak. "Deep Feature Extraction and Classification of Android Malware Images". Sensors 20, nr 24 (8.12.2020): 7013. http://dx.doi.org/10.3390/s20247013.
Pełny tekst źródłaGupta, Charu, Rakesh Kumar Singh, Simran Kaur Bhatia i Amar Kumar Mohapatra. "DecaDroid Classification and Characterization of Malicious Behaviour in Android Applications". International Journal of Information Security and Privacy 14, nr 4 (październik 2020): 57–73. http://dx.doi.org/10.4018/ijisp.2020100104.
Pełny tekst źródłaJiao, Jian, Qiyuan Liu, Xin Chen i Hongsheng Cao. "Behavior Intention Derivation of Android Malware Using Ontology Inference". Journal of Electrical and Computer Engineering 2018 (2018): 1–13. http://dx.doi.org/10.1155/2018/9250297.
Pełny tekst źródłaAkintola, Abimbola G., Abdullateef O. Balogun, Luiz Fernando Capretz, Hammed A. Mojeed, Shuib Basri, Shakirat A. Salihu, Fatima E. Usman-Hamza, Peter O. Sadiku, Ghaniyyat B. Balogun i Zubair O. Alanamu. "Empirical Analysis of Forest Penalizing Attribute and Its Enhanced Variations for Android Malware Detection". Applied Sciences 12, nr 9 (6.05.2022): 4664. http://dx.doi.org/10.3390/app12094664.
Pełny tekst źródłaTaher, Fatma, Omar AlFandi, Mousa Al-kfairy, Hussam Al Hamadi i Saed Alrabaee. "DroidDetectMW: A Hybrid Intelligent Model for Android Malware Detection". Applied Sciences 13, nr 13 (29.06.2023): 7720. http://dx.doi.org/10.3390/app13137720.
Pełny tekst źródłaAlswaina, Fahad, i Khaled Elleithy. "Android Malware Family Classification and Analysis: Current Status and Future Directions". Electronics 9, nr 6 (5.06.2020): 942. http://dx.doi.org/10.3390/electronics9060942.
Pełny tekst źródłaAbuthawabeh, Mohammad, i Khaled Mahmoud. "Enhanced Android Malware Detection and Family Classification, using Conversation-level Network Traffic Features". International Arab Journal of Information Technology 17, nr 4A (31.07.2020): 607–14. http://dx.doi.org/10.34028/iajit/17/4a/4.
Pełny tekst źródłaTaha, Altyeb, Omar Barukab i Sharaf Malebary. "Fuzzy Integral-Based Multi-Classifiers Ensemble for Android Malware Classification". Mathematics 9, nr 22 (12.11.2021): 2880. http://dx.doi.org/10.3390/math9222880.
Pełny tekst źródłaTaha, Altyeb, i Omar Barukab. "Android Malware Classification Using Optimized Ensemble Learning Based on Genetic Algorithms". Sustainability 14, nr 21 (3.11.2022): 14406. http://dx.doi.org/10.3390/su142114406.
Pełny tekst źródłaMassarelli, Luca, Leonardo Aniello, Claudio Ciccotelli, Leonardo Querzoni, Daniele Ucci i Roberto Baldoni. "AndroDFA: Android Malware Classification Based on Resource Consumption". Information 11, nr 6 (16.06.2020): 326. http://dx.doi.org/10.3390/info11060326.
Pełny tekst źródłaMilosevic, Nikola, Ali Dehghantanha i Kim-Kwang Raymond Choo. "Machine learning aided Android malware classification". Computers & Electrical Engineering 61 (lipiec 2017): 266–74. http://dx.doi.org/10.1016/j.compeleceng.2017.02.013.
Pełny tekst źródłaLiu, Pengfei, Weiping Wang, Shigeng Zhang i Hong Song. "ImageDroid: Using Deep Learning to Efficiently Detect Android Malware and Automatically Mark Malicious Features". Security and Communication Networks 2023 (7.04.2023): 1–11. http://dx.doi.org/10.1155/2023/5393890.
Pełny tekst źródłaMalik, Sapna, i Kiran Khatter. "Malicious Application Detection and Classification System for Android Mobiles". International Journal of Ambient Computing and Intelligence 9, nr 1 (styczeń 2018): 95–114. http://dx.doi.org/10.4018/ijaci.2018010106.
Pełny tekst źródłaRashed, Mohammed, i Guillermo Suarez-Tangil. "An Analysis of Android Malware Classification Services". Sensors 21, nr 16 (23.08.2021): 5671. http://dx.doi.org/10.3390/s21165671.
Pełny tekst źródłaBagui, Sikha, i Daniel Benson. "Android Adware Detection Using Machine Learning". International Journal of Cyber Research and Education 3, nr 2 (lipiec 2021): 1–19. http://dx.doi.org/10.4018/ijcre.2021070101.
Pełny tekst źródłaElsersy, Wael F., Ali Feizollah i Nor Badrul Anuar. "The rise of obfuscated Android malware and impacts on detection methods". PeerJ Computer Science 8 (9.03.2022): e907. http://dx.doi.org/10.7717/peerj-cs.907.
Pełny tekst źródłaAlbakri, Ashwag, Fatimah Alhayan, Nazik Alturki, Saahirabanu Ahamed i Shermin Shamsudheen. "Metaheuristics with Deep Learning Model for Cybersecurity and Android Malware Detection and Classification". Applied Sciences 13, nr 4 (8.02.2023): 2172. http://dx.doi.org/10.3390/app13042172.
Pełny tekst źródłaEt.al, Shafiu Musa. "HEFESTDROID: Highly Effective Features for Android Malware Detection and Analysis". Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, nr 3 (10.04.2021): 4676–82. http://dx.doi.org/10.17762/turcomat.v12i3.1884.
Pełny tekst źródłaNaeem, Hamad, Amjad Alsirhani, Mohammed Mujib Alshahrani i Abdullah Alomari. "Android Device Malware Classification Framework Using Multistep Image Feature Extraction and Multihead Deep Neural Ensemble". Traitement du Signal 39, nr 3 (30.06.2022): 991–1003. http://dx.doi.org/10.18280/ts.390326.
Pełny tekst źródłaSaputra, Hendra, Setio Basuki i Mahar Faiqurahman. "Implementasi teknik seleksi fitur pada klasifikasi malware Android menggunakan support vector machine (SVM)". Repositor 1, nr 1 (8.10.2019): 1. http://dx.doi.org/10.22219/repositor.v1i1.1.
Pełny tekst źródłaAL-Akhras, Mousa, Abdulrhman ALMohawes, Hani Omar, amer Atawneh i Samah Alhazmi. "Android malicious attacks detection models using machine learning techniques based on permissions". International Journal of Data and Network Science 7, nr 4 (2023): 2053–76. http://dx.doi.org/10.5267/j.ijdns.2023.8.019.
Pełny tekst źródłaRen, Bingfei, Chuanchang Liu, Bo Cheng, Jie Guo i Junliang Chen. "MobiSentry: Towards Easy and Effective Detection of Android Malware on Smartphones". Mobile Information Systems 2018 (21.11.2018): 1–14. http://dx.doi.org/10.1155/2018/4317501.
Pełny tekst źródłaKhatter, Kiran, i Sapna Malik. "Ranking and Risk Factor Scheme for Malicious applications detection and Classifications". International Journal of Information System Modeling and Design 9, nr 3 (lipiec 2018): 67–84. http://dx.doi.org/10.4018/ijismd.2018070104.
Pełny tekst źródłaChen, Tieming, Qingyu Mao, Yimin Yang, Mingqi Lv i Jianming Zhu. "TinyDroid: A Lightweight and Efficient Model for Android Malware Detection and Classification". Mobile Information Systems 2018 (17.10.2018): 1–9. http://dx.doi.org/10.1155/2018/4157156.
Pełny tekst źródłaWu, Bozhi, Sen Chen, Cuiyun Gao, Lingling Fan, Yang Liu, Weiping Wen i Michael R. Lyu. "Why an Android App Is Classified as Malware". ACM Transactions on Software Engineering and Methodology 30, nr 2 (marzec 2021): 1–29. http://dx.doi.org/10.1145/3423096.
Pełny tekst źródłaAcharya, Saket, Umashankar Rawat i Roheet Bhatnagar. "A Comprehensive Review of Android Security: Threats, Vulnerabilities, Malware Detection, and Analysis". Security and Communication Networks 2022 (29.06.2022): 1–34. http://dx.doi.org/10.1155/2022/7775917.
Pełny tekst źródłaAcharya, Saket, Umashankar Rawat i Roheet Bhatnagar. "A Low Computational Cost Method for Mobile Malware Detection Using Transfer Learning and Familial Classification Using Topic Modelling". Applied Computational Intelligence and Soft Computing 2022 (13.06.2022): 1–22. http://dx.doi.org/10.1155/2022/4119500.
Pełny tekst źródłaFAN, Wenhao, Dong LIU, Fan WU, Bihua TANG i Yuan'an LIU. "Android Malware Detection Based on Functional Classification". IEICE Transactions on Information and Systems E105.D, nr 3 (1.03.2022): 656–66. http://dx.doi.org/10.1587/transinf.2021edp7133.
Pełny tekst źródłaSALAMATU, ALIYU SULAIMAN, SURAJUDEEN ADEBAYO OLAWALE, IDRIS ISMAILA i A. BASHIR SULAIMON. "ANDROID MALWARE CLASSIFICATION USING WHALE OPTIMIZATION ALGORITHM". i-manager's Journal on Mobile Applications and Technologies 5, nr 2 (2018): 37. http://dx.doi.org/10.26634/jmt.5.2.15631.
Pełny tekst źródłaSwetha, K., i K. V.D.Kiran. "Survey on Mobile Malware Analysis and Detection". International Journal of Engineering & Technology 7, nr 2.32 (31.05.2018): 279. http://dx.doi.org/10.14419/ijet.v7i2.32.15584.
Pełny tekst źródłaGómez, Alfonso, i Antonio Muñoz. "Deep Learning-Based Attack Detection and Classification in Android Devices". Electronics 12, nr 15 (28.07.2023): 3253. http://dx.doi.org/10.3390/electronics12153253.
Pełny tekst źródłaBhattacharya, Abhishek, i Radha Tamal Goswami. "Community Based Feature Selection Method for Detection of Android Malware". Journal of Global Information Management 26, nr 3 (lipiec 2018): 54–77. http://dx.doi.org/10.4018/jgim.2018070105.
Pełny tekst źródłaChen, Hui, Zhengqiang Li, Qingshan Jiang, Abdur Rasool i Lifei Chen. "A Hierarchical Approach for Android Malware Detection Using Authorization-Sensitive Features". Electronics 10, nr 4 (10.02.2021): 432. http://dx.doi.org/10.3390/electronics10040432.
Pełny tekst źródłaWang, Xin, Dafang Zhang, Xin Su i Wenjia Li. "Mlifdect: Android Malware Detection Based on Parallel Machine Learning and Information Fusion". Security and Communication Networks 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/6451260.
Pełny tekst źródłaKim, Minki, Daehan Kim, Changha Hwang, Seongje Cho, Sangchul Han i Minkyu Park. "Machine-Learning-Based Android Malware Family Classification Using Built-In and Custom Permissions". Applied Sciences 11, nr 21 (1.11.2021): 10244. http://dx.doi.org/10.3390/app112110244.
Pełny tekst źródłaMenaouer, Brahami, Abdallah El Hadj Mohamed Islem i Matta Nada. "Android Malware Detection Approach Using Stacked AutoEncoder and Convolutional Neural Networks". International Journal of Intelligent Information Technologies 19, nr 1 (8.09.2023): 1–22. http://dx.doi.org/10.4018/ijiit.329956.
Pełny tekst źródłaYusof, Muhammad, Madihah Mohd Saudi i Farida Ridzuan. "Mobile Botnet Classification by using Hybrid Analysis". International Journal of Engineering & Technology 7, nr 4.15 (7.10.2018): 103. http://dx.doi.org/10.14419/ijet.v7i4.15.21429.
Pełny tekst źródłaT, Sai Tejeshwar Reddy. "An Enhanced Novel GA-based Malware Detection in End Systems Using Structured and Unstructured Data by Comparing Support Vector Machine and Neural Network". Revista Gestão Inovação e Tecnologias 11, nr 2 (5.06.2021): 1514–25. http://dx.doi.org/10.47059/revistageintec.v11i2.1777.
Pełny tekst źródłaGuendouz, Mohamed, i Abdelmalek Amine. "A New Feature Selection Method Based on Dragonfly Algorithm for Android Malware Detection Using Machine Learning Techniques". International Journal of Information Security and Privacy 17, nr 1 (10.03.2023): 1–18. http://dx.doi.org/10.4018/ijisp.319018.
Pełny tekst źródłaLin, Ying-Dar, i Chun-Ying Huang. "Three-Phase Detection and Classification for Android Malware Based on Common Behaviors". Journal of Communications Software and Systems 12, nr 3 (21.09.2016): 157. http://dx.doi.org/10.24138/jcomss.v12i3.80.
Pełny tekst źródłaDing, Chao, Nurbol Luktarhan, Bei Lu i Wenhui Zhang. "A Hybrid Analysis-Based Approach to Android Malware Family Classification". Entropy 23, nr 8 (3.08.2021): 1009. http://dx.doi.org/10.3390/e23081009.
Pełny tekst źródłaLu, Tianliang, Yanhui Du, Li Ouyang, Qiuyu Chen i Xirui Wang. "Android Malware Detection Based on a Hybrid Deep Learning Model". Security and Communication Networks 2020 (28.08.2020): 1–11. http://dx.doi.org/10.1155/2020/8863617.
Pełny tekst źródłaThakur, Deepak. "Classification of Android Malware using its Image Sections". International Journal of Advanced Trends in Computer Science and Engineering 9, nr 4 (25.08.2020): 6151–55. http://dx.doi.org/10.30534/ijatcse/2020/288942020.
Pełny tekst źródła