Rozprawy doktorskie na temat „ANALYZING DATA”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „ANALYZING DATA”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Ju, Hyunsu. "Topics in analyzing longitudinal data". Texas A&M University, 2004. http://hdl.handle.net/1969.1/1565.
Pełny tekst źródłaRoberg, Abigail M. "Data Visualizations: Guidelines for Gathering, Analyzing, and Designing Data". Ohio University Honors Tutorial College / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ouhonors1524826335755109.
Pełny tekst źródłaLau, Ho-yin Eric. "Statistical methods for analyzing epidemiological data". Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B34829969.
Pełny tekst źródłaLau, Ho-yin Eric, i 劉浩然. "Statistical methods for analyzing epidemiological data". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B34829969.
Pełny tekst źródłaStetcenko, D. O., i Y. V. Smityuh. "Intellectual Data Analyzing Using Wavele TTransformation". Thesis, Sumy State University, 2016. http://essuir.sumdu.edu.ua/handle/123456789/47136.
Pełny tekst źródłaPan, Feng Wang Wei. "Efficient algorithms in analyzing genomic data". Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2009. http://dc.lib.unc.edu/u?/etd,2622.
Pełny tekst źródłaTitle from electronic title page (viewed Oct. 5, 2009). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science." Discipline: Computer Science; Department/School: Computer Science.
Björck, Olof. "Analyzing gyro data based image registration". Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-397459.
Pełny tekst źródłaHossain, Abu. "General methods for analyzing bounded proportion data". Thesis, London Metropolitan University, 2017. http://repository.londonmet.ac.uk/1243/.
Pełny tekst źródłaHo, Wai-shing. "Techniques for managing and analyzing unconventional data". Click to view the E-thesis via HKUTO, 2004. http://sunzi.lib.hku.hk/hkuto/record/B39849028.
Pełny tekst źródłaHo, Wai-shing, i 何偉成. "Techniques for managing and analyzing unconventional data". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B39849028.
Pełny tekst źródłaMcDermott, Matthew. "Fast Algorithms for Analyzing Partially Ranked Data". Scholarship @ Claremont, 2014. http://scholarship.claremont.edu/hmc_theses/58.
Pełny tekst źródłaDumas, Raphaël A. (Raphaël Antoine). "Analyzing transit equity using automatically collected data". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/103650.
Pełny tekst źródłaThesis: S.M. in Transportation, Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2015.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 145-148).
By inferring individual passengers' origins, destinations, and transfers using automatically collected transit data, transit providers can obtain and analyze larger volumes of information, with more accuracy, and at more frequent intervals than are available through traditional origin-destination (OD) surveys. Automatic OD inference can be an input into the analysis and reporting of agencies' social goals, such as the provision of equitable service regardless of race, national origin, or ethnicity, which is federally required in the USA by Title VI of the Civil Rights Act of 1964. The methodology prescribed in the Title VI regulation, however, has not adapted to the opportunity to supplement supply metrics with passenger-centric demand metrics through the availability of OD data. The goal of this thesis is to demonstrate a preliminary methodology to link automatically inferred OD information from regular transit users to the demographic data of public transit commuters from the US Census's American Community Survey, and to examine variation in passenger-centric metrics such as journey time and speed. This study infers origins and destinations in the context of the Massachusetts Bay Transportation Authority (MBTA). From a sample month of these data, an example of a passenger-centric analysis is performed by comparing travel times and speeds of trips with origins in areas home to predominantly Black or African American transit commuters to travel times and speeds of trips with origins in areas home to predominantly White transit commuters. Commuters from predominantly Black or African American census tracts are found to have longer travel times and slower speeds relative to commuters from tracts where commuters are predominantly White. Differences are within agency specified margins, but are significant, in particular for journeys involving bus transfers. Short-term solutions such as through-routing of important bus routes and increasing reliability of bus departures at terminals and long-term solutions such as faster, more frequent Diesel Multiple Unit rail service are proposed and evaluated to mitigate these differences.
by Raphaël A. Dumas.
M.C.P.
S.M. in Transportation
Lambert, Michel Joseph. "Visualizing and analyzing human-centered data streams". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33301.
Pełny tekst źródłaIncludes bibliographical references (p. 71-73).
The mainstream population is readily adapting to the notion that the carrying of mobile computational devices such as cell phones and PDAs on one's person is as essential as taking along one's watch or credit cards. In addition to their stated and oftentimes proprietary functionality, these technological innovations have the potential to also function as powerful sensory data collectors. These devices are able to record and store a variety of data about their owner's everyday activities, a new development that may significantly impact the way we recall information. Human memory, with its limitations and subjective recall of events, may now be supplemented by the latent potential of these in-place devices to accurately record one's daily activities, thereby giving us access to a wealth of information about our own lives. In order to make use of this recorded information, it must be presented in an easily understood format: timelines have been a traditional display metaphor for this type of data. This thesis explores the visualization and navigation schemes available for these large temporal data sets, and the types of analyzation that they facilitate.
by Michel Joseph Lambert.
M.Eng.and S.B.
Huotari, N. (Niko). "Graphical user interface for analyzing radiological data". Master's thesis, University of Oulu, 2016. http://urn.fi/URN:NBN:fi:oulu-201606042269.
Pełny tekst źródłaAivotutkimus keskittyy entistä enemmän kriittisesti näytteistettyyn multimodaalisen dataan. Aivojen monimutkaisuus vaatii useiden mittareiden analysointia samanaikaisesti, jotta saadaan kattava kuva aivojen toiminnasta. Lisäksi aiempaa tarkempi kuvantaminen lisää datan määrää, mikä asettaa uusia vaatimuksia analyysityökaluille. Tämä diplomityö esittää MRI -yhteensopivan multimodaalisen mittausjärjestelmän, Hepta-scan konseptin ja työkalupaketin (Nifty) mittausten analysointiin. Konsepti mittaa aivoja (MREG), noninvasiivista verenpainetta (NIBP), aivosähkökäyrää (EEG), lähi-infrapunaspektroskopiaa (NIRS) ja anestesiadataa synkronoidusti. Nifty yhdistää useita olemassa olevia ja uusia kehitettyjä ohjelmia, jotka muodostavat yksinkertaisen käynnistyspisteen kaikille työkaluille. Se sisältää tietokantajärjestelmän, joka pitää yllä informaatiota multimodaalisista mittauksista. Tämä työ esittää ohjelmisto- ja laitteistopuolen Hepta-scan konseptista, ja selittää sen työnkulun. Lopuksi työkalupaketti, Niftyn rakenne esitetään, ja sen toiminnot selitetään
Zuo, Zhiya. "Analyzing collaboration with large-scale scholarly data". Diss., University of Iowa, 2019. https://ir.uiowa.edu/etd/7055.
Pełny tekst źródłaJansen, Steven G. "3, 2, 1 blastoff analyzing data through rocketry /". Menomonie, WI : University of Wisconsin--Stout, 2006. http://www.uwstout.edu/lib/thesis/2006/2006jansens.pdf.
Pełny tekst źródłaBari, Wasimul. "Analyzing binary longitudinal data in adaptive clinical trials /". Internet access available to MUN users only, 2003. http://collections.mun.ca/u?/theses,167453.
Pełny tekst źródłaDonnelly-Boyce, Courtney. "Method for analyzing juvenile growth data across populations". Connect to resource, 2008. http://hdl.handle.net/1811/32232.
Pełny tekst źródłaSibley, Christy N. "Analyzing Navy Officer Inventory Projection Using Data Farming". Thesis, Monterey, California. Naval Postgraduate School, 2012. http://hdl.handle.net/10945/6868.
Pełny tekst źródłaThe Navys Strategic Planning and Analysis Directorate (OPNAV N14) uses a complex model to project officer status in the coming years. The Officer Strategic Analysis Model (OSAM) projects officer status using an initial inventory, historical loss rates, and dependent functions for accessions, losses, lateral transfers, and promotions that reflect Navy policy and U.S. law. OSAM is a tool for informing decision makers as they consider potential policy changes, or analyze the impact of policy changes already in place, by generating Navy Officer inventory projections for a specified time horizon. This research explores applications of data farming for potential improvement of OSAM. An analysis of OSAM inventory forecast variations over a large number of scenarios while changing multiple input parameters enables assessment of key inputs. This research explores OSAM through applying the principles of design of experiments, regression modeling, and nonlinear programming. The objectives of this portion of the work include identifying critical parameters, determining a suitable measure of effectiveness, assessing model sensitivities, evaluating performance across a spectrum of loss adjustment factors, and determining appropriate values of key model inputs for future use in forecasting Navy officer inventory.
Berrar, Daniel. "Machine learning methods for analyzing DNA microarray data". Thesis, University of Ulster, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414098.
Pełny tekst źródłaAndersen, Niklas. "Analyzing the impact of data compression in Hive". Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-269235.
Pełny tekst źródłaKorhonen, H. (Heikki). "Tool for analyzing data transfer scenarios in eNodeB". Master's thesis, University of Oulu, 2016. http://urn.fi/URN:NBN:fi:oulu-201609142780.
Pełny tekst źródłaOhjelmistokehityksessä virheenjäljittämistä käytetään vian löytämiseen. Virheenjäljitystä voidaan tehdä lisäämällä lähdekoodin tulostuslauseita, joilla tutkitaan esimerkiksi muuttujien arvoa halutulla hetkellä koodissa. Toinen tapa on virheenjäljittäjän käyttäminen koodia ajettaessa. Silloin ohjelma voidaan pysäyttää haluttuun kohtaan ja tutkia muuttujien sen hetkisiä arvoja ilman koodimuutoksia. Reaaliaikainen koodi on kompleksista ja vaatii aina huolellista testausta sekä laadunvarmistusta. Virheenjäljitys on reaaliaikaisessa ympäristössä hankalampaa ja aikaa vievää, jolloin ohjelmistokehittäjillä täytyy olla tehokkaat virheenjäljitystyökalut. Reaaliaikaisessa ohjelmistossa tehokas virheenjäljitys vaatii myös informatiivisen lokityökalun. Tämä diplomityö keskittyy auttamaan LTE L2 virheenjäljitystä työssä toteutettavan lokityökalun avulla. Lokityökalu purkaa eNodeB-tukiasemasta saadut binääritiedostot lukemiskelpoiseen muotoon tekstitiedostoon. Tekstitiedostosta voidaan tutkia halutulla ajanhetkellä olevien jäljitettyjen muuttujien arvoja. Tällä voidaan varmistaa, onko LTE L2:n tiedonvirtaus sujunut onnistuneesti
Gaines, Tommi Lynn. "Statistical methods for analyzing multiple race response data". Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1580805511&sid=5&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Pełny tekst źródłaKumar, Dharmendra. "A COMPUTATIONALLY EFFICIENT METHOD OF ANALYZING THE PARAMETRIC SUBSTRUCTURES". Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/275395.
Pełny tekst źródłaChava, Gopi Krishna. "Analyzing pressure and temperature data from smart plungers to optimize lift cycles". [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-3217.
Pełny tekst źródłaFlöter, André. "Analyzing biological expression data based on decision tree induction". [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=978444728.
Pełny tekst źródłaFlöter, André. "Analyzing biological expression data based on decision tree induction". Phd thesis, Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2006/641/.
Pełny tekst źródłaModern biological analysis techniques supply scientists with various forms of data. One category of such data are the so called "expression data". These data indicate the quantities of biochemical compounds present in tissue samples.
Recently, expression data can be generated at a high speed. This leads in turn to amounts of data no longer analysable by classical statistical techniques. Systems biology is the new field that focuses on the modelling of this information.
At present, various methods are used for this purpose. One superordinate class of these methods is machine learning. Methods of this kind had, until recently, predominantly been used for classification and prediction tasks. This neglected a powerful secondary benefit: the ability to induce interpretable models.
Obtaining such models from data has become a key issue within Systems biology. Numerous approaches have been proposed and intensively discussed. This thesis focuses on the examination and exploitation of one basic technique: decision trees.
The concept of comparing sets of decision trees is developed. This method offers the possibility of identifying significant thresholds in continuous or discrete valued attributes through their corresponding set of decision trees. Finding significant thresholds in attributes is a means of identifying states in living organisms. Knowing about states is an invaluable clue to the understanding of dynamic processes in organisms. Applied to metabolite concentration data, the proposed method was able to identify states which were not found with conventional techniques for threshold extraction.
A second approach exploits the structure of sets of decision trees for the discovery of combinatorial dependencies between attributes. Previous work on this issue has focused either on expensive computational methods or the interpretation of single decision trees a very limited exploitation of the data. This has led to incomplete or unstable results. That is why a new method is developed that uses sets of decision trees to overcome these limitations.
Both the introduced methods are available as software tools. They can be applied consecutively or separately. That way they make up a package of analytical tools that usefully supplement existing methods.
By means of these tools, the newly introduced methods were able to confirm existing knowledge and to suggest interesting and new relationships between metabolites.
Neuere biologische Analysetechniken liefern Forschern verschiedenste Arten von Daten. Eine Art dieser Daten sind die so genannten "Expressionsdaten". Sie geben die Konzentrationen biochemischer Inhaltsstoffe in Gewebeproben an.
Neuerdings können Expressionsdaten sehr schnell erzeugt werden. Das führt wiederum zu so großen Datenmengen, dass sie nicht mehr mit klassischen statistischen Verfahren analysiert werden können. "System biology" ist eine neue Disziplin, die sich mit der Modellierung solcher Information befasst.
Zur Zeit werden dazu verschiedenste Methoden benutzt. Eine Superklasse dieser Methoden ist das maschinelle Lernen. Dieses wurde bis vor kurzem ausschließlich zum Klassifizieren und zum Vorhersagen genutzt. Dabei wurde eine wichtige zweite Eigenschaft vernachlässigt, nämlich die Möglichkeit zum Erlernen von interpretierbaren Modellen.
Die Erstellung solcher Modelle hat mittlerweile eine Schlüsselrolle in der "Systems biology" erlangt. Es sind bereits zahlreiche Methoden dazu vorgeschlagen und diskutiert worden. Die vorliegende Arbeit befasst sich mit der Untersuchung und Nutzung einer ganz grundlegenden Technik: den Entscheidungsbäumen.
Zunächst wird ein Konzept zum Vergleich von Baummengen entwickelt, welches das Erkennen bedeutsamer Schwellwerte in reellwertigen Daten anhand ihrer zugehörigen Entscheidungswälder ermöglicht. Das Erkennen solcher Schwellwerte dient dem Verständnis von dynamischen Abläufen in lebenden Organismen. Bei der Anwendung dieser Technik auf metabolische Konzentrationsdaten wurden bereits Zustände erkannt, die nicht mit herkömmlichen Techniken entdeckt werden konnten.
Ein zweiter Ansatz befasst sich mit der Auswertung der Struktur von Entscheidungswäldern zur Entdeckung von kombinatorischen Abhängigkeiten zwischen Attributen. Bisherige Arbeiten hierzu befassten sich vornehmlich mit rechenintensiven Verfahren oder mit einzelnen Entscheidungsbäumen, eine sehr eingeschränkte Ausbeutung der Daten. Das führte dann entweder zu unvollständigen oder instabilen Ergebnissen. Darum wird hier eine Methode entwickelt, die Mengen von Entscheidungsbäumen nutzt, um diese Beschränkungen zu überwinden.
Beide vorgestellten Verfahren gibt es als Werkzeuge für den Computer, die entweder hintereinander oder einzeln verwendet werden können. Auf diese Weise stellen sie eine sinnvolle Ergänzung zu vorhandenen Analyswerkzeugen dar.
Mit Hilfe der bereitgestellten Software war es möglich, bekanntes Wissen zu bestätigen und interessante neue Zusammenhänge im Stoffwechsel von Pflanzen aufzuzeigen.
Serpeka, Rokas. "Analyzing and modelling exchange rate data using VAR framework". Thesis, KTH, Matematik (Inst.), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-94180.
Pełny tekst źródłaLiu, Kejun. "Software and Methods for Analyzing Molecular Genetic Marker Data". NCSU, 2003. http://www.lib.ncsu.edu/theses/available/etd-07182003-122001/.
Pełny tekst źródłaSomasekaram, Premathas. "Designing a Business Intelligence Solution for Analyzing Security Data". Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-208685.
Pełny tekst źródłaLe, Hai-Son Phuoc. "Probabilistic Models for Collecting, Analyzing, and Modeling Expression Data". Research Showcase @ CMU, 2013. http://repository.cmu.edu/dissertations/245.
Pełny tekst źródłaRODRIGUES, LIVIA COUTO RUBACK. "ENRICHING AND ANALYZING SEMANTIC TRAJECTORIES WITH LINKED OPEN DATA". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=33109@1.
Pełny tekst źródłaCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Os últimos anos testemunharam o uso crescente de dispositivos que rastreiam objetos móveis: equipamentos com GPS e telefones móveis, veículos ou outros sensores da Internet das Coisas, além de dados de localização de check-ins de redes sociais. Estes dados de mobilidade são representados como trajetórias, e armazenam a sequência de posições de um objeto móvel. Porém, estas sequências representam somente os dados de posição originais, que precisam ser semanticamente enriquecidos para permitir tarefas de análise e apoiar um entendimento profundo sobre o comportamento do movimento. Um outro espaço de dados global sem precedentes tem crescido rapidamente, a Web de Dados, graças à iniciativa de Dados Interligados. Estes dados semânticos ricos e livremente disponíveis fornecem uma nova maneira de enriquecer dados de trajetória. Esta tese apresenta contribuições para os desafios que surgem considerando este cenário. Em primeiro lugar, a tese investiga como dados de trajetória podem se beneficiar da iniciativa de dados interligados, guiando todo o processo de enriquecimento semântico utilizando fontes de dados externas. Em segundo lugar, aborda o tópico de computação de similaridade entre entidades representadas como dados interligados com o objetivo de computar a similaridade entre trajetórias semanticamente enriquecidas. A novidade da abordagem apresentada nesta tese consiste em considerar as características relevantes das entidades como listas ranqueadas. Por último, a tese aborda a computação da similaridade entre trajetórias enriquecidas comparando a similaridade entre todas as entidades representadas como dados interligados que representam as trajetórias enriquecidas.
The last years witnessed a growing number of devices that track moving objects: personal GPS equipped devices and GSM mobile phones, vehicles or other sensors from the Internet of Things but also the location data deriving from the Social Networks check-ins. These mobility data are represented as trajectories, recording the sequence of locations of the moving object. However, these sequences only represent the raw location data and they need to be semantically enriched to be meaningful in the analysis tasks and to support a deep understanding of the movement behavior. Another unprecedented global space that is also growing at a fast pace is the Web of Data, thanks to the emergence of the Linked Data initiative. These freely available semantic rich datasets provide a novel way to enhance trajectory data. This thesis presents a contribution to the many challenges that arise from this scenario. First, it investigates how trajectory data may benefit from the Linked Data Initiative by guiding the whole trajectory enrichment process with the use of external datasets. Then, it addresses the pivotal topic of the similarity computation between Linked Data entities with the final objective of computing the similarity between semantically enriched trajectories. The novelty of our approach is that the thesis considers the relevant entity features as a ranked list. Finally, the thesis targets the computation of the similarity between enriched trajectories by comparing the similarity of the Linked Data entities that represent the enriched trajectories.
Suslov, E., O. Nozhenko i A. Mostovych. "Strain gauge measurement data analyzing for flat wheel detection". Thesis, Національний авіаційний університет, 2017. http://er.nau.edu.ua/handle/NAU/32947.
Pełny tekst źródłaXi, Nuo. "A Composite Likelihood Approach for Factor Analyzing Ordinal Data". The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306331305.
Pełny tekst źródłaRylander, Max, i Filip Hultgren. "Application failure predictions from neural networks analyzing telemetry data". Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-451340.
Pełny tekst źródłaAntonelli, Joseph. "Statistical Methods for Analyzing Complex Spatial and Missing Data". Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:26718722.
Pełny tekst źródłaBiostatistics
Grigsby, Jason D. "Analyzing and improving initial data for binary black holes". Winston-Salem, NC : Wake Forest University, 2009. http://dspace.zsr.wfu.edu/jspui/handle/10339/44664.
Pełny tekst źródłaWilhelm, Gary L. "Analyzing and sharing data for surface combat weapons systems". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Dec%5FWilhelm.pdf.
Pełny tekst źródłaMathias, Henry. "Analyzing Small Businesses' Adoption of Big Data Security Analytics". ScholarWorks, 2019. https://scholarworks.waldenu.edu/dissertations/6614.
Pełny tekst źródłaHarris, Lateasha Monique. "Perceptions of Teachers about Using and Analyzing Data to Inform Instruction". ScholarWorks, 2018. https://scholarworks.waldenu.edu/dissertations/5469.
Pełny tekst źródłaSternelöv, Gustav. "Analysis of forklift data – A process for decimating data and analyzing fork positioning functions". Thesis, Linköpings universitet, Statistik och maskininlärning, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139213.
Pełny tekst źródłaSismanis, Yannis. "Dwarf a complete system for analyzing high-dimensional data sets /". College Park, Md. : University of Maryland, 2004. http://hdl.handle.net/1903/1876.
Pełny tekst źródłaThesis research directed by: Computer Science. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Furbush, Mary M. "Analyzing and reporting high school transcript and academic achievement data". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 6.87 Mb., 124 p, 2006. http://proquest.umi.com/pqdlink?did=1176542701&Fmt=7&clientId=79356&RQT=309&VName=PQD.
Pełny tekst źródłaKaida, Ning. "Biological insights of transcription factor through analyzing ChIP-Seq data". Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/21733.
Pełny tekst źródłaNing, Kaida. "Biological insights of transcription factor through analyzing ChIP-Seq data". Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/38531.
Pełny tekst źródłaRader, Kevin Andrew. "Methods for Analyzing Survival and Binary Data in Complex Surveys". Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11619.
Pełny tekst źródłaYuting, Feng. "Analyzing European National Accounts Data for Detection of anomalous observation". Thesis, Örebro universitet, Handelshögskolan vid Örebro Universitet, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-35667.
Pełny tekst źródłaWang, Suyi Wang. "Analyzing data with 1D non-linear shapes using topological methods". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524020976023345.
Pełny tekst źródłaHoshaw-Woodard, Stacy. "Large sample methods for analyzing longitudinal data in rehabilitation research /". free to MU campus, to others for purchase, 1999. http://wwwlib.umi.com/cr/mo/fullcit?p9946263.
Pełny tekst źródłaPungdumri, Steven Charubhat. "An Interactive Visualization Model for Analyzing Data Storage System Workloads". DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/705.
Pełny tekst źródła